The Perfect Codes of Non-coprime and Coprime Graphs


Download PDF

Authors: B. TOLUE AND A. ERFANIAN

DOI: 10.46793/KgJMat2506.913T

Abstract:

In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.



Keywords:

Coprime graph, non-coprime graph, perfect code, total perfect code.



References:

[1]   N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973), 289–296. http://dx.doi.org/10.1016/0095-8956(73)90042-7

[2]   H. Dorbidi, A note on the coprime graph of a group, Int. J. Group Theory 5(4) (2016), 17–22.

[3]   A-A. Ghidewon, R. H. Hammack and D. T. Taylor, Total perfect codes in tensor products of graphs, Ars Combin. 88 (2008), 129–134.

[4]   J. Kratochví, Perfect codes over graphs, J. Combin. Theory Ser. B 40(2) (1986), 224–228. http://dx.doi.org/10.1016/0095-8956(86)90079-1

[5]   S. Ling and C. Xing, Coding Theory a First Course, Cambridge University Press, 2004.

[6]   X. Ma, Perfect codes in proper reduced power graphs of finite groups, Commun. Algebra 48(9) (2020), 3881–3890. http://dx.doi.org/10.1080/00927872.2020.1749845

[7]   X. Ma, G. L. Walls, K. Wang and S. Zhou, Subgroup perfect codes in Cayley graphs, SIAM J. Discrete Math. 34(3) (2020), 1909–1921. http://dx.doi.org/10.1137/19M1258013

[8]   X. Ma, H. Wei and L. Yang, The coprime graph of a group, Int. J. Group Theory 3(3) (2014), 13–23.

[9]   F. Mansoori, A. Erfanian and B. Tolue, Non-coprime graph of a finite group, AIP Conference Proceedings 1750(1) (2016), Article ID 050017. https://doi.org/10.1063/1.4954605

[10]   C. E. Shannon, A mathematical theory of communication, The Bell System Technical Journal 27 (1948), 379–423, 623–656. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x, http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x