On Spectral Radius Algebras and Conditional Type Operators


Download PDF

Authors: M. R. JABBARZADEH AND B. MINAYI

DOI: 10.46793/KgJMat2506.967J

Abstract:

In this note, we study both the spectral radius and Deddens algebras associated to the normal weighted conditional type operators on L2(Σ). Also, in this setting, some other special properties of these algebras will be investigated.



Keywords:

Deddens algebra, spectral radius algebra, conditional expectation, invariant subspace.



References:

[1]   A. Biswas, A. Lambert and S. Petrović, On spectral radius algebras and normal operators, Indiana Univ. Math. J. 56(4) (2007), 1661–1674. https://doi.org/10.1512/iumj.2007.56.2907

[2]   A. Biswas, A. Lambert, S. Petrović and B. Weinstock, On spectral radius algebras, Oper. Matrices 2(2) (2008), 167–176. https://doi.org/10.7153/oam-02-11

[3]   Y. Estaremi, Unbounded weighted conditional expectation operators, Complex Anal. Oper. Theory 10(3) (2016), 567–580. https://doi.org/10.1007/s11785-015-0499-y

[4]   Y. Estaremi and M. R. Jabbarzadeh, Spectral radius algebras of WCE operators, Oper. Matrices 11(2) (2017), 337–346. https://doi.org/10.7153/oam-2017-11-21

[5]   J. D. Herron, Spectral radius algebras of idempotents, Integral Equations Operator Theory 64(2) (2009), 193–201. https://doi.org/10.1007/s00020-009-1684-z

[6]   M. R. Jabbarzadeh and S. Khalil Sarbaz, Lambert multipliers between Lp spaces, Czechoslovak Math. J. 60(1) (2010), 31–43. https://doi.org/10.1007/s10587-010-0012-8

[7]   M. R. Jabbarzadeh and M. H. Sharifi, Lambert conditional type operators on L2(Σ), Linear Multilinear Algebra 67(10) (2019), 2030–2047. https://doi.org/10.1080/03081087.2018.1479372

[8]   M. R. Jabbarzadeh and M. H. Sharifi, Operators whose ranges are contained in the null space of conditional expectations, Math. Nachrichten 292(11) (2019), 2427–2440. https://doi.org/10.1002/mana.201800066

[9]   A. Lambert and S. Petrović, Beyond hyperinvariance for compact operators, J. Funct. Anal. 219(1) (2005), 93–108. https://doi.org/10.1016/j.jfa.2004.06.001

[10]   A. Lambert, Conditional expectation related characterizations of the commutant of an abelian W-algebra, Far East J. Math. Sci. 2(1) (1994), 1–8.

[11]   S. Petrović, Spectral radius algebras, Deddens algebras, and weighted shifts, Bull. Lond. Math. Soc. 43(3) (2011), 513–522. https://doi.org/10.1112/blms/bdq118

[12]   S. Petrović, On the structure of the spectral radius algebras, J. Operator Theory 60(1) (2008), 137–148.

[13]   M. M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, 1993.