Multiple Positive Solutions of Discrete Fractional Boundary Value Problems


Download PDF

Authors: N. S. GOPAL AND J. M. JONNALAGADDA

DOI: 10.46793/KgJMat2601.025G

Abstract:

In this work, we deal with the following two-point non-linear Dirichlet boundary value problem for a finite nabla fractional difference equation:

{    (   α    )                          b
  −   ∇  ρ(a)u   (t) = f (u (t)),   t ∈ ℕ a+2,

  u (a) =  u(b) =  0.

Here a, b with ba 3, 1 < α < 2, f : + ∪{0} is a continuous function, and ρ(a)α denotes the αth order Riemann-Liouville nabla difference operator. First, we construct an associated Green’s function and obtain some of its properties. Under suitable conditions on the non-linear part of the difference equation, we deduce some results for at least two and at least three positive solutions of the considered problem. For this purpose, we use a few prominent conical shell fixed point theorems.



Keywords:

Nabla fractional difference, boundary value problem, Dirichlet boundary conditions, Green’s function, cone, fixed point, positive solution.



References:

[1]   R. P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge Tracts in Mathematics 141, Cambridge University Press, Cambridge, 2001.

[2]   K. Ahrendt, L. De Wolf, L. Mazurowski, K. Mitchell, T. Rolling and D. Veconi, Initial and boundary value problems for the Caputo fractional self-adjoint difference equations, Enlightenment in Pure Appl. Math. 2(1) (2016).

[3]   D. Anderson, R. Avery and A. C. Peterson, Three positive solutions to a discrete focal boundary value problem. Positive solutions of non-linear problems, J. Comput. Appl. Math. 88(1) (1998), 103–118. http://dx.doi.org/10.1016/S0377-0427(97)00201-X

[4]   F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. Special Edition I (2009), 12 pages. http://dx.doi.org/10.14232/ejqtde.2009.4.3

[5]   R. I. Avery, A generalization of the Leggett-Williams fixed point theorem, Math. Sci. Res. Hot-Line 3(7) (1999), 9–14.

[6]   R. I. Avery, C. J. Chyan and J. Henderson, Twin solutions of boundary value problems for ordinary differential equations and finite difference equations, Comput. Math. Appl. 42(3–5) (2001), 695–704. http://dx.doi.org/10.1016/S0898-1221(01)00188-2

[7]   R. I. Avery and A. C. Peterson, Three positive fixed points of non-linear operators on ordered Banach spaces, Comput. Math. Appl. 42(3–5) (2001), 313–322. http://dx.doi.org/10.1016/S0898-1221(01)00156-0

[8]   Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311(2) (2005) 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052

[9]   A. Brackins, Boundary value problems of nabla fractional difference equations, Thesis (Ph.D.), The University of Nebraska - Lincoln, 2014, 92 pages.

[10]   A. Cabada and N. Dimitrov, Existence of solutions of nth-order non-linear difference equations with general boundary conditions, Acta Math. Sci. Ser. B (Engl. Ed.) 40(1) (2020), 226–236. http://dx.doi.org/10.1007/s10473-020-0115-y

[11]   M. Bohner and A. C. Peterson, Dynamic Equations on Time Scales: An Introduction with Application, Birkhauser, Boston, MA 2001.

[12]   C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, Cambridge, 2015.

[13]   N. S. Gopal and J. M. Jonnalagadda, Existence and uniqueness of solutions to a nabla fractional difference equation with dual nonlocal boundary conditions, Foundations 2 (2022), 151–166. http://dx.doi.org/10.3390/foundations2010009

[14]   H. L. Gray and N. Fan Zhang, On a new definition of the fractional difference, Math. Comp. 50(182) (1988), 513–529.

[15]   D. J. Guo and V. Lakshmikantham, Non-linear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering 5, Academic Press, Inc., Boston, MA, 1988.

[16]   J. St. Goar, A Caputo boundary value problem in Nabla fractional calculus, Thesis (Ph.D.), University of Nebraska - Lincoln, 2016, 112 pages.

[17]   Y. Gholami and K. Ghanbari, Coupled systems of fractional -difference boundary value problems, Differ. Equ. Appl. 8(4) (2016), 459–470.

[18]   Y. He, M. Suna and C. Hou, Multiple positive solutions of non-linear boundary value problem for finite fractional difference, Abstr. Appl. Anal. (2014), Article ID 147975, 12 pages. http://dx.doi.org/10.1155/2014/147975

[19]   A. Ikram, Lyapunov inequalities for nabla Caputo boundary value problems. J. Difference Equ. Appl. 25(6) (2019), 757–775. https://doi.org/10.48550/arXiv.1907.08847

[20]   J. M. Jonnalagadda and N. S. Gopal, Green’s function for a discrete fractional boundary value problem, Differ. Equ. Appl. 14(2) (2022), 163–178. http://dx.doi.org/10.7153/dea-2022-14-10

[21]   J. M. Jonnalagadda, An ordering on Green’s function and a Lyapunov-type inequality for a family of nabla fractional boundary value problems, Fract. Differ. Calc. 9(1) (2019), 109–124.http://dx.doi.org/10.7153/fdc-2019-09-08

[22]   J. M. Jonnalagadda, On-Hilfer type nabla difference equations, Int. J. Differ. Equ. 15(1) (2020), 91–107.

[23]   J. M. Jonnalagadda, Lyapunov-type inequalities for discrete Riemann-Liouville fractional boundary value problems, Int. J. Difference Equ. 13(2) (2018), 85–103.

[24]   J. M. Jonnalagadda, On a nabla fractional boundary value problem with general boundary conditions, AIMS Math. 5(1) (2020), 204–215. https://doi.org/10.3934/math.2020012

[25]   J. M. Jonnalagadda, On two-point Riemann-Liouville type nabla fractional boundary value problems, Adv. Dyn. Syst. Appl. 13(2) (2018), 141–166.

[26]   M. S. Keener and C. C. Travis, Positive cones and focal points for a class of nth-order differential equations, Trans. Amer. Math. Soc. 237 (1978), 331–351.

[27]   K. Deimling, Non-linear Functional Analysis, Springer-Verlag, Berlin, 1985.

[28]   E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library. John Wiley & Sons, Inc., New York, 1989.

[29]   M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Translated from the Russian by Richard E. Flaherty, Ltd. Groningen, 1964, 381 pages.

[30]   K. M. Kwong, On Krasnoselskii’s cone fixed point theorem, Fixed Point Theory Appl. (2008), Article ID 164537, 18 pages. https://doi.org/10.1155/2008/164537

[31]   A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006.

[32]   M. G.Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Trans. (1950), 128 pages.

[33]   R. W. Leggett and L. R. Williams, Multiple positive fixed points of non-linear operators on ordered Banach spaces, Indiana Univ. Math. J. 28(4) (1979), 673–688.

[34]   K. S. Miller and B. Ross, Fractional Difference Calculus. Univalent Functions, Fractional Calculus, and their Applications, Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989.

[35]   K. S. Miller and B. Ross, Univalent functions, fractional calculus, and their applications, Papers from the Symposium held at Nihon University, New York, 1989, 404 pages.

[36]   I. Podlubny, Fractional Differential Equations. An introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, Mathematics in Science and Engineering 198, Academic Press, Inc., San Diego, CA, 1999.

[37]   S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Translated from the 1987 Russian, Gordon and Breach Science Publishers, Yverdon, 1993.