A Novel Shifted Jacobi Operational Matrix Method for Linear Multi-terms Delay Differential Equations of Fractional Variable-order with Periodic and Anti-periodic Conditions


Download PDF

Authors: H. R. KHODABANDEHLO, E. SHIVANIAN AND S. ABBASBANDY

DOI: 10.46793/KgJMat2601.039K

Abstract:

This paper investigates the generalized linear multi-terms delay fractional differential equation of variable order with periodic and anti-periodic conditions. In this work, a novel shifted Jacobi operational matrix technique is applied to solve a class of these equations, so that the original problem becomes a system of algebraic equations that can be solved by numerical methods. The proposed technique is successfully applied to the aforementioned problem. Sufficient and complete numerical tests are presented to demonstrate the accuracy, generality, efficiency of presented technique and the flexibility of this scheme. The numerical results of this method are compared with other existing methods such as fractional backward differential formulas (FBDF). Comparing the outcomes of these schemes, as well as comparing the current technique (NSJOM) with the exact solution, demonstrates the efficiency and validity of this method. It should be noted that the implementation of current method is considered very easy and general for many numerical techniques. Furthermore, the error and its bound are estimated.



Keywords:

Periodic and anti-periodic conditions, shifted Jacobi operational matrix technique, Caputo differential operator, multi-terms delay differential equations, fractional variable-order.



References:

[1]   H. R. Khodabandehlo, E. Shivanian and S. Abbasbandy, Numerical solution of nonlinear delay differential equations of fractional variable-order using a novel shifted Jacobi operational matrix, Engineering with Computers 3(38) (2022), 2593–2607. https://doi.org/10.1007/s00366-021-01422-7

[2]   H. R. Khodabandelo, E. Shivanian and S. Abbasbandy, A novel shifted Jacobi operational matrix method for nonlinear multi-terms delay differential equations of fractional variable-order with periodic and anti-periodic conditions, Math. Meth. Appl. Sci. 45(1) (2022), 1–20. https://doi.org/10.1002/mma.8358

[3]   H. R. Khodabandehlo, E. Shivanian and S. Abbasbandy, A novel shifted Jacobi operational matrix for solution of nonlinear fractional variable-order differential equation with proportional delays, International Journal of Industrial Mathematics 14(4) (2022), 415–432. https://dx.doi.org/10.30495/ijim.2022.64043.1555

[4]   D. Bojović and B. Jovanović, Fractional order convergence rate estimates of finite difference method on nonuniform meshes, Comput. Methods Appl. Math. 1(3) (2001), 213–221. http://dx.doi.org/10.2478/cmam-2001-0015

[5]   D. Baleanu, R. L. Magin, S. Bhalekar and V. Daftardar-Gejji, Chaos in the fractional order nonlinear Bloch equation with delay, Commun. Nonlinear Sci. Numer. Simul. 25(1–3) (2015), 41–49. http://dx.doi.org/10.1016/j.cnsns.2015.01.004

[6]   K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms 36(1) (2004), 31–52. http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be

[7]   Y. Kuang, Delay Differential Equations: with Applications in Population Dynamics, Academic Press, London, 1993.

[8]   A. Jhinga and V. Daftardar-Gejji, A new numerical method for solving fractional delay differential equations, J. Comput. Appl. Math. 38(166) (2019), 18 pages. http://dx.doi.org/10.1007/s40314-019-0951-0

[9]   Z. Wang, A numerical method for delayed fractional-order differential equations, Hindawi Publishing Corporation Journal of Applied Mathematics (2013), Article ID 256071. http://dx.doi.org/10.1155/2013/256071

[10]   V. Daftardar-Gejji, Y. Sukale and S. Bhalekar, Solving fractional delay differential equations: a new approach, International Journal for Theory and Applications 18(2) (2015), http://dx.doi.org/10.1515/fca-2015-0026

[11]   M. SaedshoarHeris and M. Javidi, On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions, Appl. Numer. Math. 118 (2017), 203–220. http://dx.doi.org/10.1016/j.apnum.2017.03.006

[12]   C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17(3) (1984), 704–719. http://dx.doi.org/10.1137/0517050

[13]   L. Galeonea and R. Garrappa, On multistep methods for differential equations of fractional order, Mediterr. J. Math. 3(3-4) (2006), 565–580. http://dx.doi.org/10.1007/s00009-006-0097-3

[14]   S. Bhalekar and V. Daftardar-Gejji, A predictor-corrector scheme for solving non-linear delay differential equations of fractional order, J. Fract. Calc. Appl. 1(5) (2011), 1–8.

[15]   R. Garrappa, Trapezoidal methods for fractional differential equations: theoretical and computational aspects, Math. Comput. Simul. 110 (2015), 96–112. http://dx.doi.org/10.1016/j.matcom.2013.09.012

[16]   J. T. Edwards, N. J. Ford and A. C. Simpson, The numerical solution of linear multi-term fractional differential equations: systems of equations, J. Comput. Appl. Math. 148(2) (2002), 401–418. http://dx.doi.org/10.1016/S0377-0427(02)00558-7

[17]   K. Diethelm, N.J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput. 154(3) (2004), 621–640. http://dx.doi.org/10.1016/S0096-3003(03)00739-2

[18]   K. Diethelm and N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math. 225(1) (2009), 96–104. http://dx.doi.org/10.1016/j.cam.2008.07.018

[19]   A. A. El-Sayed, D. Baleanu and P. Agarwal, A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations, Journal of Taibah University for Science 14(1) (2020), 963–974. http://dx.doi.org/10.1080/16583655.2020.1792681

[20]   K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics 29 (2002), 3–22. http://dx.doi.org/10.1023/A:1016592219341

[21]   M. Ghasemi, M. Fardi and R. Khoshsiar Ghaziani, Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space, Appl. Math. Comput. 268 (2015), 815–831. http://dx.doi.org/10.1016/j.amc.2015.06.012

[22]   J. R. Ockendona and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. Ser. A 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078

[23]   M. D. Buhmann and A. Iserles, Stability of the discretized pantograph differential equation, J. Math. Comput. 60 (1993), 575–589. http://dx.doi.org/10.1090/S0025-5718-1993-1176707-2

[24]   F. Shakeri and M. Dehghan, Solution of delay differential equations via a homotopy perturbation method, Math. Comput. Model. 48 (2008), 486–498. http://dx.doi.org/10.1016/j.mcm.2007.09.016

[25]   F. Shakeri and M. Dehghan, The use of the decomposition procedure of a domian for solving a delay diffusion equation arisingin electrodynamics, Phys. Scr. Phys. Scr. 78(065004) (2008), 11 pages. http://dx.doi.org/10.1088/0031-8949/78/06/065004

[26]    S. Sedaghat, Y. Ordokhani and M. Dehghan, Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Commun. Nonlin. Sci. Numer. Simul. 17 (2012), 4125–4136. http://dx.doi.org/10.1016/j.cnsns.2012.05.009

[27]   W. G. Ajello, H. I. Freedmana and J. Wu, A model of stage structured population growth with density depended time delay, SIAM J. Appl. Math. 52 (1992), 855–869. http://dx.doi.org/https://doi.org/10.1137/015204

[28]   M. L. Morgado, N. J. Ford and P. Lima, Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math. 252 (2013), 159–168. http://dx.doi.org/10.1016/j.cam.2012.06.034

[29]   J. Čermák, J. Horníček and T. Kisela, Stability regions for fractional differential systems with a time delay, Commun. Nonlinear Sci. Numer. Simul. 31(1) (2016), 108–123. http://dx.doi.org/10.1016/j.cnsns.2015.07.008

[30]   M. P. Lazarević and A. M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Math. Comput. Model. 49(3) (2009), 475–481. http://dx.doi.org/10.1016/j.mcm.2008.09.011

[31]    V. Daftardar-Gejji and H. Jafari, An iterative method for solving non linear functional equations, J. Math. Anal. Appl. 316(2006), 753–763. http://dx.doi.org/10.1016/j.jmaa.2005.05.009

[32]   V. Daftardar-Gejji, Y. Sukale and S. Bhalekar, A new predictor-corrector method for fractional differential equations, Appl. Math. Comput. 244 (2014), 158–182. http://dx.doi.org/10.1016/j.amc.2014.06.097

[33]   K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. 265(2) (2002), 229–248. http://dx.doi.org/10.1006/jmaa.2000.7194

[34]   D. Tavares, R. Almeida and D. F. M. Torres, Caputo derivatives of fractional variable order: numerical approximations, Commun Nonlinear Sci. Numer. Simul. 35 (2016), 69–87. http://dx.doi.org/10.1016/j.cnsns.2015.10.027

[35]   J. Liu, X. Lia dn L. Wu, An operational matrix of fractional differentiation of the second kind of Chebyshev polynomial for solving multi-term variable order fractional differential equation, Math. Probl. Eng. (2016), 10 pages. http://dx.doi.org/10.1155/2016/7126080

[36]   A. M. Nagy, N. H. Sweilam and A. A. El-Sayed, New operational matrix for solving multi-term variable order fractional differential equations, J. Comp. Nonlinear Dyn. 13 (2018), 011001–011007. http://dx.doi.org/10.1115/1.4037922

[37]   A. A. El-Sayed and P. Agarwal, Numerical solution of multi-term variable-order fractional differential equations via shifted Legendre polynomials, Math. Meth. Appl. Sci. 42(11) (2019), 3978–3991. http://dx.doi.org/10.1002/mma.5627

[38]   F. Mallawi, J. F. Alzaidy and R. M. Hafez, Application of a Legendre collocation method to the space-time variable fractional-order advection-dispersion equation, Journal of Taibah University for Science 13(1)(2019), 324–330. http://dx.doi.org/10.1080/16583655.2019.1576265

[39]   A. H. Bhrawy and M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys. (2014). http://dx.doi.org/10.1016/j.jcp.2014.10.060

[40]   Y. M. Chen, L. Q. Liu, B. F. Li and Y. Sun, Numerical solution for the variable-order linear cable equation with Bernstein polynomials, Appl. Math. Comput. 238 (2014), 329–341. http://dx.doi.org/10.1016/j.amc.2014.03.066

[41]   S. Abbasbandy and A. Taati, Numerical solution of the system of nonlinear Volterra integrodifferential equations with nonlinear differential part by the operational Tau method and error estimation, J. Comput. Appl. Math. 231(1) (2009), 106–113. http://dx.doi.org/10.1016/j.cam.2009.02.014

[42]   G. Szegö, Orthogonal polynomials, Am. Math. Soc. Colloq. Pub. 23 (1985).

[43]   E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model. 36 (2012), 4931–4943. http://dx.doi.org/10.1016/j.apm.2011.12.031

[44]   S. A. Yousefi and M. Behroozifar, Operational matrices of Bernstein polynomials and their applications, Inter. Systems Sci. 32 (2010), 709–716. http://dx.doi.org/10.1080/00207720903154783

[45]   W. Labecca, O. Guimaraesa dn J. R. C. Piqueira, Dirac’s formalism combined with complex Fourier operational matrices to solve initial and boundary value problems, Commun Nonlinear Sci. Numer. Simul. 19.8 (2014), 2614–2623. http://dx.doi.org/10.1016/j.cnsns.2014.01.001

[46]   M. Razzaghi and S. Yousefi, Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations, Math. Comput. Simul. 70 (2005), 1–8. http://dx.doi.org/10.1016/j.matcom.2005.02.035

[47]   H. Danfu and S. Xufeng, Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration, Appl. Math. Comput. 194 (2007), 460–466. http://dx.doi.org/10.1016/j.amc.2007.04.048

[48]    S. H. Behiry, Solution of nonlinear Fredholm integro-differential equations using a hybrid of block pulse functions and normalized Bernstein polynomials, J. Comput. Appl. Math. 260 (2014), 258–265. http://dx.doi.org/10.1016/j.cam.2013.09.036

[49]   A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl. 59 (2010), 1326–1336. http://dx.doi.org/10.1016/j.camwa.2009.07.006

[50]   A. Saadatmandi, Bernstein operational matrix of fractional derivatives and its applications, Appl. Math. Model. 38 (2014), 1365–1372. http://dx.doi.org/10.1016/j.apm.2013.08.007

[51]   M. H. Atabakzadeh, M. H. Akrami and G. H. Erjaee, Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations, Appl. Math. Model. 37 (2013), 8903–8911. http://dx.doi.org/10.1016/j.apm.2013.04.019

[52]   A. H. Bhrawy and A. S. Alofi, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett. 26 (2013), 25–31. http://dx.doi.org/10.1016/j.aml.2012.01.027

[53]   F. A. Oliveira, Collocation and residual correction, Numer. Math. 36 (1980), 27–31. http://dx.doi.org/10.1007/BF01395986

[54]   S. Shahmorad, Numerical solution of the general form linear Fredholm-Volterra integrodifferential equations by the Tau method with an error estimation, Appl. Math. Comput. 167 (2005), 1418–1429. http://dx.doi.org/10.1016/j.amc.2004.08.045

[55]   J. de Villiers, Mathematics of Approximation, Atlantis Press, 2012.

[56]    S. Yöuzbasi, An efficient algorithm for solving multi-pantograph equation systems, Comput. Math. Appl. 64(4) (2012), 589–603. http://dx.doi.org/10.1016/j.camwa.2011.12.062

[57]   Z. Zlatev, I. Faragó and Á. Havasi, Richardson extrapolation combined with the sequential splitting procedure and ????-method, Central European Journal of Mathematics 10(1) (2012), 159–172. http://dx.doi.org/10.2478/s11533-011-0099-7

[58]   A. G. Ulsoy, Analytical solution of a system of homogeneous delay differential equations via the lambert function, in: Proceedings of the American Control Conference, Chicago, IL, 2000.