Improved Jensen-type Inequalities for $(p,h)$-convex Functions with Applications


Download PDF

Authors: M. A. IGHACHANE, L. SADEK AND M. SABABHEH

DOI: 10.46793/KgJMat2601.071I

Abstract:

The main goal of this article is to present multiple term refinements of the well-known Jensen’s inequality for h-convex functions for a non-negative super-multiplicative and super-additive function h. For example, we show that

h(1 v)f(0) + h(v)f(1) f(v) + n=0N1h(2r n(v)) k=12n Δf,h(0,1)(n,k)χ   k−1-k
( 2n ,2n )(v),

for the h-convex function f and certain positive summands. The significance of the obtained results is the way they extend known results from the setting of convex functions to other classes of functions.



Keywords:

(p,h)-convex function, operator (p,h)-convex function, Jensen’s inequality.



References:

[1]   H. Alzer, C. M. da Fonseca and A. Kovačec, Young-type inequalities and their matrix analogues, Linear Multilinear Algebra 63 (2015), 622–635. https://doi.org/10.1080/03081087.2014.891588

[2]   M. Bakherad and M. Moslehian, Reverses and variations of the Heinz inequality, Linear Multilinear Algebra 63(10) (2015), 1972–1980. https://doi.org/10.1080/03081087.2014.880433

[3]   D. Choi, Multiple-term refinements of Young type inequalities, J. Math. (2016), Article ID 4346712. https://doi.org/10.1155/2016/4346712

[4]   D. Choi, M. Krnić and J. Pecarić, Improved Jensen-type inequalities via linear interpolation and applications, J. Math. Inequal. 11(2) (2017), 301–322. https://dx.doi.org/10.7153/jmi-11-27

[5]   Y. Al-Manasrah and F. Kittaneh, Further generalization refinements and reverses of the Young and Heinz inequalities, Results Math. 19 (2016), 757–768. https://doi.org/10.1007/s00025-016-0611-2

[6]   Z. B. Fang and R. Shi, On the (p,h)-convex function and some integral inequalities, J. Inequal. Appl. 2014 (2014), Article ID 14. https://doi.org/10.1186/1029-242X-2014-45

[7]   X. Jin, B. Jin, J. Ruan and X. Ma, Some characterization of h-convex functions, J. Math. Inequal. 16(2) (2022), 751–764. https://dx.doi.org/10.7153/jmi-2022-16-53

[8]   F. Mitroi, About the precision in Jensen-Steffensen inequality, An. Univ. Craiova Ser. Mat. Inform. 37(4) (2010), 73–84. https://doi.org/10.52846/ami.v37i4.367

[9]   S. Varošanec, h-Convexity, Math. Anal. Appl. 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086

[10]   M. Sababheh, Convexity and matrix means, Linear Algebra Appl. 506 (2016), 588–602. https://doi.org/10.1016/j.laa.2016.06.027

[11]   M. Sababheh, Log and harmonically log-convex functions related to matrix norms, Oper. Matrices 10(2) (2016), 453–465. https://dx.doi.org/10.7153/oam-10-26

[12]   M. Sababheh, Means refinements via convexity, Mediterr. J. Math. 14 (2017), Article ID 125. https://doi.org/10.1007/s00009-017-0924-8

[13]   M. Sababheh, Convex functions and means of matrices, Math. Inequal. Appl. 20(1) (2017), 29–47. https://dx.doi.org/10.7153/mia-20-03

[14]   M. Sababheh, Extrapolation of convex functions, Filomat 32(1) (2018), 127–139. https://doi.org/10.2298/FIL1801127S

[15]   M. Sababheh, Interpolated inequalities for unitarily invariant norms, Linear Algebra Appl. 475 (2015), 240–250. https://doi.org/10.1016/j.laa.2015.02.026

[16]   K. S. Zhang and J. P. Wan, p-Convex functions and their properties, Pure Appl. Math. 23(1) (2007), 130–133.

[17]   X. T. Dinh, H. Q. Duong and H. N. Nguyen, Two new extensions of the weighted arithmetic-geometric mean inequality via weak sub-majorization, Indian J. Pure Appl. Math. 53 (2022), 1122–1127. https://doi.org/10.1007/s13226-022-00223-y

[18]   P. Vasić and J. Pečarić, On the Jensen inequality, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634/677 (1979), 50–54. https://www.jstor.org/stable/43668091