Improved Jensen-type Inequalities for $(p,h)$-convex Functions with Applications
Download PDF
Authors: M. A. IGHACHANE, L. SADEK AND M. SABABHEH
DOI: 10.46793/KgJMat2601.071I
Abstract:
The main goal of this article is to present multiple term refinements of the well-known Jensen’s inequality for h-convex functions for a non-negative super-multiplicative and super-additive function h. For example, we show that
h(1 − v)f(0) + h(v)f(1) ≥ f(v) + ∑ n=0N−1h(2r n(v)) ∑ k=12n Δf,h(0,1)(n,k)χ (v), |
for the h-convex function f and certain positive summands. The significance of the obtained results is the way they extend known results from the setting of convex functions to other classes of functions.
Keywords:
(p,h)-convex function, operator (p,h)-convex function, Jensen’s inequality.
References:
[1] H. Alzer, C. M. da Fonseca and A. Kovačec, Young-type inequalities and their matrix analogues, Linear Multilinear Algebra 63 (2015), 622–635. https://doi.org/10.1080/03081087.2014.891588
[2] M. Bakherad and M. Moslehian, Reverses and variations of the Heinz inequality, Linear Multilinear Algebra 63(10) (2015), 1972–1980. https://doi.org/10.1080/03081087.2014.880433
[3] D. Choi, Multiple-term refinements of Young type inequalities, J. Math. (2016), Article ID 4346712. https://doi.org/10.1155/2016/4346712
[4] D. Choi, M. Krnić and J. Pecarić, Improved Jensen-type inequalities via linear interpolation and applications, J. Math. Inequal. 11(2) (2017), 301–322. https://dx.doi.org/10.7153/jmi-11-27
[5] Y. Al-Manasrah and F. Kittaneh, Further generalization refinements and reverses of the Young and Heinz inequalities, Results Math. 19 (2016), 757–768. https://doi.org/10.1007/s00025-016-0611-2
[6] Z. B. Fang and R. Shi, On the (p,h)-convex function and some integral inequalities, J. Inequal. Appl. 2014 (2014), Article ID 14. https://doi.org/10.1186/1029-242X-2014-45
[7] X. Jin, B. Jin, J. Ruan and X. Ma, Some characterization of h-convex functions, J. Math. Inequal. 16(2) (2022), 751–764. https://dx.doi.org/10.7153/jmi-2022-16-53
[8] F. Mitroi, About the precision in Jensen-Steffensen inequality, An. Univ. Craiova Ser. Mat. Inform. 37(4) (2010), 73–84. https://doi.org/10.52846/ami.v37i4.367
[9] S. Varošanec, h-Convexity, Math. Anal. Appl. 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086
[10] M. Sababheh, Convexity and matrix means, Linear Algebra Appl. 506 (2016), 588–602. https://doi.org/10.1016/j.laa.2016.06.027
[11] M. Sababheh, Log and harmonically log-convex functions related to matrix norms, Oper. Matrices 10(2) (2016), 453–465. https://dx.doi.org/10.7153/oam-10-26
[12] M. Sababheh, Means refinements via convexity, Mediterr. J. Math. 14 (2017), Article ID 125. https://doi.org/10.1007/s00009-017-0924-8
[13] M. Sababheh, Convex functions and means of matrices, Math. Inequal. Appl. 20(1) (2017), 29–47. https://dx.doi.org/10.7153/mia-20-03
[14] M. Sababheh, Extrapolation of convex functions, Filomat 32(1) (2018), 127–139. https://doi.org/10.2298/FIL1801127S
[15] M. Sababheh, Interpolated inequalities for unitarily invariant norms, Linear Algebra Appl. 475 (2015), 240–250. https://doi.org/10.1016/j.laa.2015.02.026
[16] K. S. Zhang and J. P. Wan, p-Convex functions and their properties, Pure Appl. Math. 23(1) (2007), 130–133.
[17] X. T. Dinh, H. Q. Duong and H. N. Nguyen, Two new extensions of the weighted arithmetic-geometric mean inequality via weak sub-majorization, Indian J. Pure Appl. Math. 53 (2022), 1122–1127. https://doi.org/10.1007/s13226-022-00223-y
[18] P. Vasić and J. Pečarić, On the Jensen inequality, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634/677 (1979), 50–54. https://www.jstor.org/stable/43668091