Certain Subclasses of Bi-univalent Functions Defined by Linear Multiplier Fractional q-Differential Operator
Download PDF
Authors: C. R. KRISHNA, N. RAVIKUMAR AND B. A. FRASIN
DOI: 10.46793/KgJMat2602.205K
Abstract:
This paper introduces a novel subclass of analytic and bi-univalent functions that are linked to a linear multiplier fractional q-differential operator, defined in the open unit disk ????. The authors establish the upper bounds for the coefficients |a2| and |a3| for the functions that belong to this new subclass and its subclasses.
Keywords:
Analytic function, univalent function, bi-univalent function, starlike function, convex function, q-derivative operator.
References:
[1] P. Duren, Geometric Function Theory, Linear and Complex Analysis Problem, Book 3, 1994, 383–422.
[2] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009
[3] I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics 8(5) (2020), 1–11. https://doi.org/10.3390/math8050783
[4] S. Altinkaya and S. Yalcin, Fekete-Szegö inequalities for certain classes of biunivalent functions, Int. Sch. Res. Notices 1726 (2016), Paper ID 020078. https://doi.org/10.1063/1.4945904
[5] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazilevič functions of order ???? + iδ associated with (p; q)-Lucas polynomials, AIMS Math. 6(5) (2021), 4296–4305. https://doi.org/10.3934/math.2021254
[6] A. Amourah, B. A. Frasin, M. Ahmad and F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry 14(147) (2022), 8 pages. https://doi.org/10.3390/sym14010147
[7] A. Alsoboh, M. Darus, A. Amourah and W. G. Atshan, A certain subclass of harmonic meromorphic functions with respect to k-symmetric points, International Journal of Open Problems in Complex Analysis 15(1) (2023), 1–16.
[8] B. Alshlool, A. abu Alasal, A. Mannaâa, A. Alsoboh and A. Amourah, Consolidate a certain class of (p; q)-Lucas polynomial based bi-univalent functions with a specific discrete probability distribution, International Journal of Open Problems in Complex Analysis 15 (1) (2023), 26–37.
[9] A. O. Mostafa and Z. M. Saleh, Coefficient bounds for a class of bi-univalent functions defined by Chebyshev polynomials, International Journal of Open Problems in Complex Analysis 13 (3) (2021), 1–10.
[10] F. Yousef, A. Amourah, B. A. Frasin and T. Bulboaca, An avant-Garde construction for subclasses of analytic bi-univalent functions, Axioms 11(6) (2022), Paper ID 267. https://doi.org/10.3390/axioms11060267
[11] L. I. Cotirla, New classes of analytic and bi-univalent functions, AIMS Math. 6(10) (2021), 10642–10651. https://doi.org/10.3934/math.2021618
[12] L. I. Cotirla and A. K. Wanas, Coefficient-related studies and Fekete-Szegö inequalities for new classes of bi-starlike and bi-convex functions, Symmetry 14(11) (2022), Paper ID 2263. https://doi.org/10.3390/sym14112263
[13] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24(9) (2011) 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048
[14] B. A. Frasin, S. R. Swamy and J. Nirmala, Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afr. Mat. 32 (2020), 631–643. https://doi.org/10.1007/s13370-020-00850-w
[15] Q-H. Xu, Y-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(6) (2012), 990–994. https://doi.org/10.1016/j.aml.2011.11.013
[16] Q-H. Xu, H-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218(23) (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034
[17] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abst. Appl. Anal. 2013 (2013). https://doi.org/10.1155/2013/573017
[18] Z. Peng, G. Murugusundaramoorthy and T. Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, J. Complex Anal. 2014 (2014). https://doi.org/10.1155/2014/693908
[19] F. M. Sakar and S. M. Aydogan, Inequalities of bi-starlike functions involving Sigmoid function and Bernoulli lemniscate by subordination, International Journal of Open Problems in Computer Science and Mathematics 16 (2023), 71–82.
[20] S. R. Swamy and A. K. Wanas, A comprehensive family of bi-univalent functions defined by (m,n)-Lucas polynomials, Boletin De La Sociedad Matematica Mexicana 28 (2022). https://doi.org/10.1007/s40590-022-00411-0
[21] A. K. Wanas, F. M. Sakar and A. Alb Lupaş, Applications Laguerre polynomials for families of bi-univalent functions defined with (p,q)-Wanas operator, Axioms 12(5) (2023), Paper ID 430. https://doi.org/10.3390/axioms12050430
[22] F. Yousef, S. Alroud and M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Boletin De La Sociedad Matematica Mexicana 26 (2019), 329–339. https://doi.org/10.1007/s40590-019-00245-3
[23] F. Yousef, S. Alroud and M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Phys. 11(58) (2021), Article ID 58. https://doi.org/10.1007/s13324-021-00491-7
[24] F. H. Jackson, On q-functions and a certain difference operator, Earth and Environmental Science Transactions of the Royal Society of Edinburgh 46(2) (1909), 253–281. https://doi.org/10.1017/S0080456800002751
[25] R. Srivastava and H. M. Zayed, Subclasses of analytic functions of complex order defined by q-derivative operator, Stud. Univ. Babeş-Bolyai Math. 64 (2019), 71–80. https://doi.org/10.24193/subbmath.2019.1.07
[26] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65(4) (2013), 454–465.
[27] S. Kanas and D. Răducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca 64(5) (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9
[28] C. Ramachandran, S. Annamalai and B. A. Frasin, The q-difference operator associated with the multivalent function bounded by conical sections, Bol. Soc. Parana. Mat. 39(1) (2021), 133–146. https://doi.org/10.5269/bspm.32913
[29] C. Ramachandran, T. Soupramanien and B. A. Frasin, New subclasses of analytic function associated with q-difference operator, Eur. J. Pure Appl. 10(2) (2017), 348–362.
[30] F. M. Sakar, M. Naeem, S. Khan and S. Hussain, Hankel determinant for class of analytic functions involving q-derivative operator, J. Adv. Math. Stud. 14 (2021), 265–278.
[31] T. M. Seoudy and M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal. 2014 (2014). https://doi.org/10.1155/2014/846719
[32] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10 (2016), 135–145. https://doi.org/10.7153/jmi-10-11
[33] A. Amourah, B. A. Frasin and T. Al-Hawary, Coefficient estimates for a subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Gegenbauer polynomials, Kyungpook Math. J. 62(2) (2022), 257–269.
[34] S. D. Purohit and R. K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica 55(78) (2013).
[35] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), 55–70. https://doi.org/10.7146/math.scand.a-15177
[36] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, 1975.
[37] J. Jothibasu, Certain subclasses of bi-univalent functions defined by salagean operator, Electron. J. Math. Anal. Appl. 3(1) (2015), 150–157.
[38] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl. (1988), 53–60. https://doi.org/10.1016/B978-0-08-031636-9.50012-7