Topological Degree Method for a Class of $\Psi$-Caputo Fractional Differential Langevin Equation


Download PDF

Authors: H. LMOU, K. HILAL AND A. KAJOUNI

DOI: 10.46793/KgJMat2602.231L

Abstract:

This paper deals with the existence and uniqueness of solution for a new class of Ψ-Caputo fractional differential Langevin equation. The suggested study is based on some basic definitions of topological degree theory and fractional calculus. We established the existence result by using the topological degree method for condensing maps, and by means of Banach’s fixed point theorem we obtained the uniqueness result. As application, we give an illustrative example to demonstrate our theoretical result.



Keywords:

Ψ-Caputo fractional derivative, Langevin equations, condensing maps, Ψ-Caputo fractional differential Langevin equations, topological degree method, fractional differential Langevin equations.



References:

[1]   A. Ali, B. Samet, K. Shah and R. A. Khan, Existence and stability of solution to a coppled systems of differential equations of non-integer order, Bound. Value Probl. 2017 (2017), 1–13. https://doi.org/10.1186/s13661-017-0749-1

[2]   M. S. Abdo, S. K. Panchal and A. M. Saeed, Fractional boundary value problem with Ψ-Caputo fractional derivative, Proc. Indian Acad. Sci. Math. Sci. 129(5) (2019), 65–129. https://doi.org/10.1007/s12044-019-0514-8

[3]   A. Boutiara, M. S. Abdo, M. A. Alqudah and T. Abdeljawad, On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions, AIMS Math. 6(6) (2021), 5518–5534. https://doi.org/10.3934/math.2021327

[4]   Y. Adjabi, M. E. Samei, M. M. Matar and J. Alzabut, Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions, AIMS Math. 6(3) (2021), 2796–2843. https://doi.org/10.3934/math.2021171

[5]   M. B. Zada, K. Shah and R. A. Khan, Existence theory to a coupled system of higher order fractional hybrid differential equations by topological degree theory, Int. J. Appl. Comput. Math. 4(4) (2018), Paper ID 102. https://doi.org/10.1007/s40819-018-0534-6

[6]   Z. Baitiche, C. Derbazi and M. Benchohra, Ψ-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory, Results in Nonlinear Analysis 3(4) (2020), 167–178.

[7]   K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.

[8]   K. Diethelm, The Analysis of Fractional Differential Equations, Springer, New York, 2010.

[9]   T. A. Faree and S. K. Panchal, Existence and uniqueness of the solution to a class of fractional boundary value problems using topological methods, Journal of Siberian Federal University, Mathematics and Physics (2022).

[10]   K. Hilal, A. Kajouni and H. Lmou, Boundary value problem for the Langevin equation and inclusion with the Hilfer fractional derivative, Int. J. Differ. Equ. (2022). https://doi.org/10.17516/1997-1397-2022-15-5-615-622

[11]   C. Derbazi and H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math. 5(3) (2020), 2694–2709. https://doi.org/10.3934/math.2020174

[12]   F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comenian. (N.S.) 75(2) (2006), 233–240.

[13]   A. Khan, M. I. Syam, A. Zada and H. Khan, Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives, European Physical Journal Plus 133(7) (2018), 1–9. https://doi.org/10.1140/epjp/i2018-12119-6

[14]   R. A. Khan and K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal. 19(3–4) (2015), 515–526.

[15]   R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006

[16]   V. Lakshmikantham, S. Leela and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Newcastle, 2009.

[17]    R. Almeida, A. B. Malinowska and M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci. 41(1) (2018), 336–352. https://doi.org/10.1002/mma.4617

[18]   U. Riaz and A. Zada, Analysis of (α,β)-order coupled implicit Caputo fractional differential equations using topological degree method, Commun. Nonlinear Sci. Numer. Simul. 22(7–8) (2021), 897–915. https://doi.org/10.1515/ijnsns-2020-0082

[19]   K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

[20]   R. Almeida, M. Jleli and B. Samet, A numerical study of fractional relaxation-oscillation equations involving Ψ-Caputo fractional derivative, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113(3) (2019), 1873–1891. https://doi.org/10.1007/s13398-018-0590-0

[21]   B. Samet and H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving Ψ-Caputo fractional derivative, J. Inequal. Appl. 2018(1) (2018), 1–11. https://doi.org/10.1186/s13660-018-1850-4

[22]   J. Tariboon, S. K. Ntouyas and C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys. 2014 (2014). https://doi.org/10.1155/2014/372749

[23]   W. T. Coffey, Y. P. Kalmykov and J. T. Waldron, The Langevin Equation with Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, Second Edition, World Scientific Publishing Co., River Edge, NJ, 2004.

[24]   S. I. Denisov, H. Kantz and P. Hanggi, Langevin equation with super-heavy-tailed noise, J. Phys. A 43(28) (2010). https://doi.org/285004.10.1088/1751-8113/43/28/285004

[25]   H. Lmou, K. Hilal and A. Kajouni, A new result for Ψ-Hilfer fractional pantograph-type Langevin equation and inclusions, J. Math. 2022 (2022), 10 pages. https://doi.org/10.1155/2022/2441628

[26]   R. Rizwan, Existence theory and stability analysis of fractional Langevin equation, Int. J. Nonlinear Sci. Numer. Simul. 20(7–8) (2019), 833–848. https://doi.org/10.1515/ijnsns-2019-0053

[27]   Y. Luchko and M. Yamamoto, The general fractional derivative and related fractional differential equations, Mathematics 8(12) (2020), Paper ID 2115. https://doi.org/10.3390/math8122115

[28]   K. Hilal, A. Kajouni and H. Lmou, Existence and stability results for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions, Filomat 37 (2023), 1241–1259. https://doi.org/10.48550/arXiv.2206.07457

[29]   C. Derbazi, Q. M. Al-Mdallal, F. Jarad and Z. Baitiche, Some qualitative properties of solutions for nonlinear fractional differential equation involving two Φ-Caputo fractional derivatives, AIMS Math. (2021). https://doi.org/10.48550/arXiv.2108.13758

[30]   C. Derbazi, Z. Baitiche and A. Zada, Existence and uniqueness of positive solutions for fractional relaxation equation in terms of Ψ-Caputo fractional derivative, Int. J. Nonlinear Sci. Numer. Simul. 24(2) (2021), 633–643. https://doi.org/10.1515/ijnsns-2020-0228

[31]   H. Lmou, K. Hilal and A. Kajouni, On a class of fractional Langevin inclusion with multi-point boundary conditions, Bol. Soc. Parana. Mat. 41(2023) (2023), 13 pages.

[32]   Z. Baitiche, C. Derbazi and M. M. Matar, Ulam stability for nonlinear-Langevin fractional differential equations involving two fractional orders in the ψ-Caputo sense, Appl. Anal. 101(14) (2022), 4866–4881. https://doi.org/10.1080/00036811.2021.1873300

[33]   H. Lmou, K. Hilal and A. Kajouni, Existence and uniqueness results for Hilfer Langevin fractional pantograph differential equations and inclusions, Int. J. Difference Equ. 18(1) (2023), 145–162.