From Monotonicity of a Class of Bessel Distribution Functions to new Bounds for Related Functionals


Download PDF

Authors: D. JANKOV MAšIREVIć AND T. K. POGáNY

DOI: 10.46793/KgJMat2602.255M

Abstract:

In this note we prove a monotonicity result with respect to the parameter ν of the cumulative distribution function for the McKay Iν Bessel distribution and uniform upper bounds for a bilinear expression containing modified Bessel function of the first kind Iν. Certain implications, among others with the Horn function Φ2 and for the Gaussian hypergeometric function close the exposition.



Keywords:

Modified Bessel function of the first kind, McKay Iν Bessel distribution, Horn function Φ2, Moments, Gaussian hypergeometric function 2F1, Turán inequality.



References:

[1]   G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, University Press, Cambridge, 1934.

[2]   D. Jankov Maširević and T. K. Pogány, On new formulae for cumulative distribution function for McKay Bessel distribution, Comm. Statist. Theory Methods 50(1) (2021), 143–160.

[3]   E. Lukacs, Characteristic Functions, Nauka, Moscow, 1979 (in Russian).

[4]   A. T. McKay, A Bessel function distribution, Biometrika 24(1–2) (1932), 39–44.

[5]   F. McNolty, Some probability density functions and their characteristic functions, Math. Comp. 27(123) (1973), 495–504.

[6]   F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds.), NIST Handbook of Mathematical Functions, NIST and Cambridge University Press, Cambridge, 2010.

[7]   A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Gordon and Breach Science Publishers, New York, 1992.

[8]   H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, John Wiley & Sons, Inc., New York, 1985.

[9]   Y. Sun, Á. Baricz and S. Zhou, On the monotonicity, log-concavity, and tight bounds of the generalized Marcum and Nuttall Q-functions, IEEE Trans. Inform. Theory 56(3) (2010), 1166–1186.