Evaluation Subgroups of a map between Rational Finite H-Spaces.
Download PDF
Authors: A. ZAIM
DOI: 10.46793/KgJMat2602.287Z
Abstract:
We use the theory of Sullivan minimal models and derivation to compute the evaluation subgroups and moreover the relative evaluation subgroups of a map f : X → Y between rational finite H-spaces. As a consequence, we show that the G-sequence is exact if f induces a zero map on rational homotopy groups.
Keywords:
Sullivan minimal models, relative evaluation subgroups, derivation, H-space, G-sequence.
References:
[1] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy theory, Graduate Texts in Mathematics 205, Springer, 2001.
[2] Y. Félix and G. Lupton, Evaluation maps in rational homotopy, Topology 46 (2007), 493–506. https://doi.org/10.1016/j.top.2007.03.005
[3] J.-B. Gatsinzi, Rational homotopy type of mapping spaces between complex projective spaces and their evaluation subgroups, Commun. Korean Math. Soc. 37(1) (2022), 259—267. https://doi.org/10.4134/CKMS.c200431
[4] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87(4) (1965), 840–856. https://doi.org/10.2307/2373248
[5] G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map I: Sullivan models, derivations and G-sequences, J. Pure Appl. Algebra. 209(1) (2007), 159–171. https://doi.org/10.1016/j.jpaa.2006.05.018
[6] P. A. Otieno, J.-B. Gatsinzi and V. O. Otieno, Relative Gottlieb groups of the Plücker embedding of some complex Grassmanians, Commun. Korean Math. Soc. 35(1) (2020), 279–285. https://doi.org/10.4134/CKMS.c180453
[7] J. Z. Pan and M. H. Woo, Exactness of G-sequence and monomorphisms. Topology Appl. 109(3) (2001), 315–320. https://doi.org/10.1016/S0166-8641(99)00178-9
[8] H. Scheerer, On Rationalized H- and co-H-Spaces. With an Appendix on decomposable H- and co-H-Spaces, Manuscripta Math. 51 (1985), 63–87. https://doi.org/10.1007/BF01168347
[9] S. B. Smith, Rational evaluation subgroups, Math. Z. 221 (1996), 387–400. https://doi.org/10.1007/BF02622121
[10] M. H. Woo and J.-R. Kim, Certain subgroups of homotopy groups, J. Korean Math Soc. 21 (1984), 109–120.
[11] M. H. Woo and K. Y. Lee, On the relative evaluation subgroups of a CW-pair, J. Korean Math. Soc. 25(1) (1988), 149–160.
[12] A. Zaim, Relative Gottlieb groups of mapping spaces and their rational cohomology, Proceedings of the International Geometry Center 15(1) (2022), 1–15. https://doi.org/10.15673/tmgc.v15i1.2196
[13] A. Zaim, Evaluation subgroups of mapping spaces over Grassmann manifolds, Kyungpook Math. J. 63(1) (2023), 131–139. https://doi.org/10.5666/KMJ.2022.63.1.131