Coupled Nonlocal Boundary Value Problems for Fractional Integro-differential Langevin System via Variable Coefficient


Download PDF

Authors: L. IBNELAZYZ, K. AIT TOUCHENT AND K. GUIDA

DOI: 10.46793/KgJMat2603.357I

Abstract:

In this paper, we aim to study a new coupled system of nonlinear fractional integro-differential Langevin equations with coupled multipoint boundary conditions. The existence and uniqueness of solution are investigated by using the Banach’s and Krasnoselskii’s fixed point theorems. The Ulam-Hyers stability of the mentioned equation is provided by applying the classical technique of functional analysis. Two examples are presented to verify our analysis.



Keywords:

Fractional integro-differential Langevin system, fractional derivatives and integrals, coupled nonlocal boundary value problems, Ulam-Hyers stability.



References:

[1]   R. Hilfer, Applications of Fractional Calculs in Physics, World Scientific, Singapore, 2000.

[2]   K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[3]   I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1993.

[4]   Y. Zhou, Basic Theory of Fractional Differential Equations, Xiangtan University, China, 2014.

[5]   K. Hilal, L. Ibnelazyz, K. Guida and S. Melliani, Existence of Mild Solutions for an Impulsive Fractional Integro-differential Equations with Non-local Condition, Springer Nature Switzerland AG, 2019, 251–271. https://10.1007/978-3-030-02155-9-20

[6]   K. Hilal, K. Guida, L. Ibnelazyz and M. Oukessou, Existence Results for an Impulsive Fractional Integro-Differential Equations with Non-compact Semigroup, Springer Nature Switzerland AG, 2019, 191–211. https://10.1007/978-3-030-02155-9-16

[7]   H. Mohammadi, S. Kumar, S. Rezapour and S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals 114 (2021), Article ID 110668.https://doi.org/10.1016/j.chaos.2021.110668

[8]   H. Khan , Kh. Alam, H. Gulzar, S. Etemad and S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simulation 198 (2022), 455–473. https://10.1016/j.matcom.2022.03.009

[9]   S. Etemad, I. Avci, P. Kumar, D. Baleanu and S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N109 virus and its generalized Caputo-type version, Chaos Solitons Fractals 162 (2022), Article ID 112511. https://doi.org/10.1016/j.chaos.2022.112511

[10]   M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad and S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Contin. Discrete Models 68 (2021). https://doi.org/10.1186/s13662-021-03228-9

[11]   D. Baleanu, A. Jajarmi c, H. Mohammadi and S. Rezapour, New study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals 134 (2020), Artcile ID 109705. https://doi.org/10.1016/j.chaos.2020.109705

[12]   D. Baleanua, S Etemadc, H. Mohammadi and S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul. 100 (2021), Article ID 105844. https://doi.org/10.1016/j.cnsns.2021.105844

[13]    N. Huy Tuana, H. Mohammadi and S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Solitons Fractals 140 (2020), Article ID 110107. https://doi.org/10.1016/j.chaos.2020.110107

[14]   M. Ahmad,A. Zada, M. Ghaderi, R. George and S. Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal and Fractional 6(4) (2022). https://doi.org/10.3390/fractalfract6040203

[15]   S. Hussain, E. Nadia Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour and M. K. A. Kaabar, On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Spaces 2022 (2022), Article ID 4320865, 9 pages. https://doi.org/10.1155/2022/4320865

[16]   D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative, Adv. Contin. Discrete Models 2020 (2020), Article ID 71. https://doi.org/10.1186/s13662-020-02544-w

[17]   W. T. Coffey, Y. P. Kalmykov and J. T. Waldron, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, World Scientific, Singapore, 2004.

[18]   B. Khaminsou, Ch. Thaiprayoon, J. Alzabut and W. Sudsutad, Nonlocal boundary value problems for integro-differential Langevin equation via the generalized Caputo proportional fractional derivative, Bound. Value Probl. 2020(176) (2020). https://doi.org/10.1186/s13661-020-01473-7

[19]   B. Ahmad, A. Alsaedi and S. K. Ntouyas, Nonlinear Langevin equations and inclusions involving mixed fractional order derivatives and variable coefficient with fractional nonlocal-terminal conditions, AIMS Math. 4(3) (2019), 626–647.

[20]   B. Ahmad, A, Alsaedi and S. Salem, On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders, Adv. Contin. Discrete Models 2019 (2019), Article ID 57.

[21]   A. Salem, F. Alzahrani and L. Almaghamsi, Fractional Langevin equations with nonlocal integral boundary conditions, Mathematics 7(5) (2019), Paper ID 402.

[22]   A. Salem and M. Alnegga, Fractional Langevin equations with multi-point and nonlocal integral boundary conditions, Cogent Mathematics and Statistics (2020), Paper ID 1758361.

[23]   T. Sandev and Z. Tomovski, Fractional Equations and Models: Theory and Applications, Springer Nature, Geneva, Switzerland, 2019.

[24]   B. J. West, M. Bologna and P. Grigolini, Physics of Fractal Operators, Springer, New York, USA, 2003.

[25]   V. Kobelev and E. Romanov, Fractional Langevin equation to describe anamalous diffusion, Progress of Theoretical Physics Supplements 139 (2000), 470–476.

[26]   B. Ahmad, S. K. Ntouyas and A. Alsaedi, On fully coupled nonlocal multi-point boundary value problems of nonlinear mixed-order fractional differential equations on an arbitrary domain, Filomat 32 (2018), 4503–4511.

[27]   B. Ahmad, S. Hamdan, A. Alsaedi and S. K. Ntouyas, On a nonlinear mixed-order coupled fractional differential system with new integral boundary conditions, AIMS Math. 6(6) (2021), 5801–5816.

[28]   A. Alsaedi, S. Hamdan, B. Ahmad and S. K. Ntouyas, Existence results for coupled nonlinear fractional differential equations of different orders with nonlocal coupled boundary conditions, J. Inequal. Appl. 2021 (2021), Paper ID 95.

[29]   A. Alsaedi, A. F. Albideewi, S. K. Ntouyas and B. Ahmad, Existence results for a coupled system of Caputo type fractional integro-differential equations with multi-point and sub-strip boundary conditions, Adv. Contin. Discrete Models 2021 (2021), Paper ID 19. https://doi.org/10.1186/s13662-020-03174-y

[30]   B. Ahmad, S. Hamdan, A. Alsaedi and S. K. Ntouyas, A study of a nonlinear coupled system of three fractional differential equations with nonlocal coupled boundary conditions, Adv. Contin. Discrete Models 2021 (2021), Paper ID 278. https://doi.org/10.1186/s13662-021-03440-7

[31]   Z. Ali, A. Zada and K. Shah, On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations, Bull. Malays. Math. Sci. Soc. 42 (2019), 2681–2699.

[32]   Z. Ali, A. Zada and K. Shah, Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl. 2018 (2018), Paper ID 175.

[33]   I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math. 26 (2010), 103–107.

[34]   S. Rezapour, B. Tellab, C. T. Deressa, S. Etemad and K. Nonlaopon, HU-Type Stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method, Fractal and Fractional 5(4) (2021). https://doi.org/10.3390/fractalfract5040166

[35]   N. Lungu and S. A. Ciplea, Ulam-Hyers stability of Black-Scholes equation, Stud. Univ. Babes-Bolyai Math. 61 (2016), 467–472.

[36]   A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Matematicheskikh Nauk 10 (1955), 123–127.