On Hadamard-Caputo Implicit Fractional Integro-Differential Equations With Boundary Fractional Conditions
Download PDF
Authors: A. A. HAMOUD, C. KECHAR, A. ARDJOUNI, H. EMADIFAR, A. KUMAR AND L. ABUALIGAH
DOI: 10.46793/KgJMat2603.491H
Abstract:
The purpose of this paper is to investigate the existence and uniqueness of solutions for nonlinear fractional implicit integro-differential equations of Hadamard-Caputo type with fractional boundary conditions. The reasoning is inspired by diverse classical fixed point theory, such as the Schauder and Banach fixed point theorems. The theoretical findings are illustrated through an example.
Keywords:
Fixed point theorems, existence, uniqueness, Hadamard-Caputo fractional derivative, integro-differential equation.
References:
[1] R. P. Agarwal, M. Benchohra and B. A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differ. Equ. Math. Phys. 44 (2008), 1–21.
[2] R. P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, UK, 2001.
[3] Y. Arioua, B. Basti and N. Benhamidouche, Initial value system for nonlinear implicit fractional differential equations with Katugampola derivative, Appl. Math. E-Notes 19 (2019), 397–412.
[4] M. Alesemi, N. Iqbal and A. A. Hamoud, The analysis of fractional-order proportional delay physical models via a novel transform, Complexity 2022 (2022), 1–13.
[5] K. Balachandran and J. J. Trujillo, The nonlocal Cauchy system for nonlinear fractional integro-differential equations in Banach spaces, Nonlinear Anal. 72 (2010), 4587–4593.
[6] T. D. Benavides, An existence theorem for implicit differential equations in a Banach space, Ann. Math. Pura Appl. 4 (1978), 119–130.
[7] M. Benchohra, S. Bouriah and J. R. Graef, Boundary value problems for nonlinear implicit Hadamard-Caputo-type fractional differential equations with impulses, Mediterr. J. Math. 14(206) (2017), 1–21.
[8] M. Benchohra, J. Henderson and D. Seba, Boundary value systems for fractional differential inclusions in Banach Space, Fractional Differential Calculus 2(1) (2012), 99–108.
[9] M. Benchohra and J. E. Lazreg, Nonlinear fractional implicit differential equations, Commun. Appl. Anal. 17(3–4) (2013), 471–482.
[10] A. Boutiara, K. Guerbati and M. Benbachir, Hadamard-Caputo fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Mathematics 5(1) (2019), 259–272.
[11] P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269(1) (2002), 1–27.
[12] N. Derdar, Nonlinear implicit Hadamard-Caputo fractional differential equation with fractional boundary conditions, Jordan J. Math. Stat. 15(4B) (2022), 999–1014. https://doi.org/10.47013/15.4.14
[13] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2004.
[14] G. Emmanuele, Convergence of successive approximations for implicit ordinary differential equations in Banach spaces, Funkcialaj Ekvacioj 24 (1981), 325–330.
[15] G. Emmanuele and B. Ricceri, On the existence of solutions of ordinary differential equations in implicit form in Banach spaces, Ann. Mat. Pura Appl. 129 (1981), 367–382.
[16] A. A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations, Advances in the Theory of Nonlinear Analysis and its Application 4(4) (2020), 321–331.
[17] A. A. Hamoud, Uniqueness and stability results for Caputo fractional Volterra-Fredholm integro-differential equations, Journal of Siberian Federal University. Mathematics & Physics 14(3) (2021), 313–325. https://doi:10.17516/1997-1397-2021-14-3-313-325
[18] A. A. Hamoud and K. P. Ghadle, The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques, Probl. Anal. Issues Anal. 7(25)(1) (2018), 41–58. https://doi:10.15393/j3.art.2018.4350
[19] A. A. Hamoud, M. SH. Bani Issa and K. P. Ghadle, Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Functional Analysis and Applications 23(4) (2018), 797–805.
[20] K. Hilal, L. Ibnelazyz, K. Guida and S. Melliani, Existence of Mild Solutions for an Impulsive Fractional Integro-differential Equations with Non-local Condition, Springer Nature Switzerland AG, New York, NY, USA, 2019.
[21] K. Hilal, K. Guida, L. Ibnelazyz and M. Oukessou, Existence Results for an Impulsive Fractional Integro-differential Equations with Non-compact Semigroup, Springer Nature Switzerland AG, New York, NY, USA, 2019.
[22] K. Hussain, A. Hamoud and N. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Functional Analysis and Applications 24(4) (2019), 827–836.
[23] V. M. Hokkanen, Continuous dependence for an implicit nonlinear equation, J. Differ. Equ. 110 (1994), 67–85.
[24] F. Jarad, D. Baleanu and T. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ. 2012(1) (2012), 1–8.
[25] K. Ivaz, I. Alasadi and A. Hamoud, On the Hilfer fractional Volterra-Fredholm integro differential equations, IAENG International Journal of Applied Mathematics 52(2) (2022), 426–431.
[26] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38(6) (2001), 1191–1204.
[27] P. Karthikeyan and R. Arul, Integral boundary value problems for implicit fractional differential equations involving Hadamard and Hadamard-Caputo fractional derivatives, Kragujevac J. Math. 45(3) (2021), 331–341. https://doi:10.46793/KgJMat2103.331K
[28] K. D. Kucche, J. J. Nieto and V. Venktesh, Theory of nonlinear implicit fractional differential equations, Differ. Equ. Dyn. Syst. 28(1) (2020), 1–17. https://doi.org/10.1007/s12591-016-0297-7
[29] V. Lakshmikantham and M. Rao, Theory of Integro-Differential Equations, Gordon & Breach, London, 1995.
[30] J. J. Nieto, A. Ouahab and V. Venktesh, Implicit fractional differential equations via the Liouville-Caputo derivative, Mathematics 3(2) (2015), 398–411.
[31] I. Podlubny, Fractional Differential Equations, Academic press, New York, USA, 1999.
[32] S. Unhaley and S. Kendre, On existence and uniqueness results for iterative fractional integro-differential equation with deviating arguments, Appl. Math. E-Notes 19 (2019), 1–16.
[33] D. Vivek, E. M. Elsayed and K. Kanagarajan, Theory of fractional implicit differential equations with complex order, Journal of Universal Mathematics 2(2) (2019), 154–165.
[34] D. Vivek, K. Kanagarajan and E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math. 15(1) (2018), 1–14. https://doi.org/10.1007/s00009-017-1061-0
[35] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.