Conservation Laws of the Time-Fractional Zakharov-Kuznetsov-Burgers Equation

Download PDF


DOI: 10.46793/KgJMat2001.075N


An important application of Lie group theory of differential equations is applied to study conservation laws of time-fractional Zakharov-Kuznetsov-Burgers (ZKB) equation with Riemann-Liouville and Caputo derivatives. This analysis is based on a modified version of Noether’s theorem provided by Ibragimov to construct the conserved vectors of the equation. This is done by non-linearly self-adjointness of the equation which will be stated via a formal Lagrangian in the sequel.


Generalized Zakharov-Kuznetsov-Burgers equation, Riemann Liouviile derivative, Caputo fractional derivative, Lie point symmetry, fractional conservation laws.


[1]   N. A. El-Bedwehyand and W. M. Moslem, Zakharov-Kuznetsov-Burgers equation in super thermal electron-positron-ion plasma, Astrophys. Space Sci. 335(2) (2011), 435–442.

[2]   S. Das, Functional Fractional Calculus for System Identification and Controls, Springer-Verlag, Berlin, Heidelberg, 2008.

[3]   R. K. Gazizov, N. H. Ibragimov and S. Y. Lukashchuk,Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlinear Sci. Numer. Simul. 23 (2014), 153–163.

[4]   R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Group-invariant solutions of fractional differential equations, in: J. Machado, A. Luo, R. Barbosa, M. Silva, L. Figueiredo (Eds.), Nonlinear Science and Complexity, Springer, Dordrecht, 2011, 51–59.

[5]   M. A. Helal and A. R. Seadawy, Benjamin-Feirin stability in nonlinear dispersive waves, Comput. Math. Appl. 64 (2012), 3557–3568.

[6]   R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, 2000.

[7]   N. H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws, Archives of ALGA 7/8 (2011), 1–99.

[8]   N.H Ibragimov, A new conservation theorem, J. Math. Anal. Appl. 333 (2007), 311–328.

[9]    Y. L. Jiang and X. L. Ding, Non-negative solutions of fractional functional differential equations, Comput. Math. Appl. 5 (2012), 896–904.

[10]   A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[11]   M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients, J. Phys. A 35(31) (2002), 6675–6693.

[12]   E. Lashkarian and S. Reza Hejazi, Group analysis of the time fractional generalized diffusion equation, Phys. A 479 (2017), 572–579.

[13]   E. Lashkarian, S. Reza Hejazi and E. Dastranj, Conservation laws of (3+α)-dimensional time-fractional diffusion equation, Comput. Math. Appl. 75 (2018), 740–754.

[14]   E. Lashkarian and S. Reza Hejazi, Exact solutions of the time fractional nonlinear Schrodinger equation with two different methods, Math. Methods Appl. Sci. (2018), DOI: 10.1002/mma.4770.

[15]   S. Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dynam. 80(1-2) (2015), 791–802.

[16]   R. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (2010), 1586–1593.

[17]    F. C. Merala, T. J. Roystona and R. Magin, Fractional calculus in viscoelasticity, an experimental study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 939–945.

[18]   K. S. Miller and B. Ross, An Introduction to the Fractional Integrals and Derivatives-Theory and Applications, John Willey and Sons, New York, 1993.

[19]   A. Naderifard, S. Reza Hejazi and E. Dastranj, Symmetry properties, conservation laws and exact solutions of time-fractional irrigation equation, Waves Random Complex Media, DOI: 10.1080/17455030.2017.1420943.

[20]   E. Noether, Invariant variational problems, Transport Theory and Statistical Physics 1 (1971), 186–207.

[21]   K. B. Oldham and F. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

[22]   P. Olver, Applications of Lie Groups to Differential Equations, Graduated Texts in Mathematics 107, Springer, New York, 1993.

[23]   A. Ouhadan and E. H. Elkinani, Exact solutions of time fractional Kolmogorov equation by using Lie symmetry analysis, J. Fract. Calc. Appl. 1 (1974), 97–104.

[24]   I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of their Solution and Some of their Applications, Academic Press, San Diego, CA, 1999.

[25]   S. Rashidi and S. Reza Hejazi, Symmetry properties, similarity reduction and exact solutions of fractional Boussinesq equation, Int. J. Geom. Methods Mod. Phys. 14(6) (2017), Article ID 1750083, 15 pages.

[26]   S. Rashidi and S. Reza Hejazi, Analyzing Lie symmetry and constructing conservation laws for time-fractional Benny-Lin equation, Int. J. Geom. Methods Mod. Phys. 14(12) (2017), Article ID 1750170, 25 pages.

[27]   S. Rashidi, S. Reza Hejazi and E. Dastranj, Approximate symmetry analysis of nonlinear Rayleigh-wave equation, Int. J. Geom. Methods Mod. Phys. 15(3) (2018), Artice ID 1850055, 18 pages.

[28]   S. Samko, A. A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993.

[29]   E. Saberi and S. Reza Hejazi, Lie symmetry analysis, conservation laws and exact solutions of the time-fractional generalized Hirota-Satsuma coupled KdV system, Phys. A 492 (2018), 296–307.

[30]   E. Saberi, S. Reza Hejazi and E. Dastranj, A new method for option pricing via time-fractional PDE, Asian-Eur. J. Math. 11(5) (2018), Article ID 1850074, 15 pages.

[31]   R. Sahadevan and T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl. 2 (2012), 341–347.

[32]   A. R. Seadawy, The solutions of the Boussinesq and generalized fifth-order KdV equations by using the direct algebraic method, Appl. Math. Sci. 12(82) (2012), 4081–4090.

[33]   A. R. Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma, Comput. Math. Appl. 67 (2014), 172–180.

[34]   A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: part I, Comput. Math. Appl. 70 (2015), 345–352.

[35]   A. R. Seadawy, Dianchen Lu, bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability, Results in Physics 7 (2017), 43–48.

[36]   A. R. Seadawy, Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, The European Physical Journal Plus 132(29) (2017), 13 pages.

[37]   V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer-Verlag, Berlin-Heidelberg, 2010.

[38]   V. E. Zakharov and E. A. Kuznetsov, On three-dimensional solitons, Journal of Experimental and Theoretical Physics 39 (1974), 285—286.

[39]   G. Wanga and K. Fakhar, Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2 + 1)-dimensional Zakharov-Kuznetsov-Burgers equation, Comput. & Fluids 119 (2015), 143–148.