Application of the Sumudu Transform to Solve Regular Fractional Continuous-Time Linear Systems

Download PDF


DOI: 10.46793/KgJMat2102.267K


In this work, Sumudu transform is used to establish the solution of a regular fractional continuous-time linear system based on Caputo fractional derivative-integral. First results of the proposed method are presented and compared to the existing ones.


Regular fractional linear system, Caputo fractional derivative-integral, Sumudu Transform.


[1]   F. M. Belgacem, A. A. Karaballi and S. Kalla, Analytical investigations of the sumudu transform and applications to integral production equations, Problems in Engineering, Hindawi Publishing Corporation 3 (2003), 103–118.

[2]   D. Bouagada and P. Van Dooren, State space solution of implicit fractional continuous-time systems, Fract. Calc. Appl. Anal. 15(3) (2012), 356–361.

[3]   R. Caponetto, G. Dongola, L. Fortuna and I. Petras, Fractional Order Systems: Modeling and Control Applications, World Scientific Series on Nonlinear Science, Series A 72, World Scientific, Singapore, 2010.

[4]   M. Caputo, Elasticitá e Dissipazione, Zanichelli, Bologna, 1969.

[5]   L. Fadiga, C. Farges, J. Sabatier and M. Moze, On computation of H norm for commensurate fractional order systems, 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 2011, 8231–8236.

[6]   F. Jarad, K. Bayram, T. Abdeljawad and D. Baleanu, On the discrete Sumudu transform, Romanian Reports in Physics 64(2) (2012), 347–356.

[7]   T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Studies in Systems, Decision and Control 13, Springer International Publishing, Switzerland, 2015.

[8]   Z. Kaisserli and D. Bouagada, State space solution of fractional continuous time systems using sumudu transform, Bulletin d’Information de l’Académie de Hassan II des Sciences et Techniques, MADEV Conference, Rabat, Morocco, 2017, 53–57.

[9]   S. Karunathilaka, N. Hampson, R. Leek and T. Sinclair, The impedance of the alkaline zinc-manganese dioxide cell. II an interpretation of the data, Journal of Applied Electrochemistry 11(6) (1981), 715–721.

[10]   Q. D. Katatbeh and F. M. Belgacem, Application of the Sumudu transform to fractional differential equation, Nonlinear Stud. 18(1) (2011), 99–112.

[11]   A. Kiliçman, N. Eltayeb and R. A. M. Atan, A note on the comparison between Laplace and Sumudu transforms, Bull. Iranian Math. Soc. 37 (2011), 131–141.

[12]   I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1998.

[13]   V. H. Schmidt and J. E. Drumheller, Dielectric properties of lithium hydrazinium sulfate, Phys. Rev. 4 (1971), 4582–4597.

[14]   D. Valèrio and J. Costa, A method for identifying digital models and its application to non-integer order control, Controlo-6th Portuguese Conference on Automatic Control, APCA, Faro, Junho, 2004.

[15]   J. Vashi and M.G. Timol, Laplace and Sumudu transforms and their application, International Journal of Innovation Science, Engineering & Technology, 3(8) (2016), 538–542.

[16]   G. K. Watugala, Sumudu transform - a new integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech. 24 (1993), 35–43.