On the Non-Negative Radial Solutions of the Two Dimensional Bratu Equation

Download PDF


DOI: 10.46793/KgJMat2102.275N


In this paper, we study the boundary value problem on the unit circle for the Bratu’s equation depending on the real parameter μ. From the parameter estimate, the existence of non-negative solution is set. A numerical method is suggested to justify the theoretical result. It is a combination of the adaptation of finite difference and Gauss-Seidel method allowing us to obtain a good approximation of μc, with respect to the exact theoretical method μc = λ = 5.7831859629467.


Non-linear eigenvalue problem, finite difference method, Gauss-Seidel method.


[1]   B. Bathia, Numerical solution of Bratu-type equation by the variational iteration method, Hacet. J. Math. Stat. 39(1) (2010), 23–29.

[2]   J. P. Boyd, An analytical and numerical study of the two-dimensional Bratu equation, J. Sci. Comput. 1(2) (1986), 183–206.

[3]   J. P. Boyd, Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation, Appl. Math. Comput. 142 (2003), 189–200.

[4]   R. L. Burden and J. D. Faires, Numerical Analysis, 9th Edition, Brooks/Cole CENGAGE Learning, Boston, 2011.

[5]   H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A. N. Miliou and A. N. Anagnostopoulos, Dynamics of the solution of Bratu’s equation, Nonlinear Anal. 71 (2009), 672–678.

[6]   E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys. 143 (1992), 501–525.

[7]   D. Chae and O. Imanuvilov, Existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Commun. Math. Phys. 215 (2000), 119–142.

[8]   S. Chanillo and M. Kiessling, Symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Commun. Math. Phys. 160 (1994), 217–238.

[9]   D. A. Frank-Kamenetski, Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, Princeton, New Jersey, 1955.

[10]   B. Gidas, W. M. Ni and L. Niremberg, Symmetry and related properties via the maximum principle, Comm. Math. Physics 69 (1979), 209–243.

[11]   B. Ghazanfari and A. Sepahvandzadeh, A domain decomposition method for solving fractional Bratu-type equations, J. Math. Comput. Sci. 8 (2014), 236–244.

[12]   L. Jin, Application of modified variational iteration method to the Bratu-type problems, International Journal of Contemporary Mathematical Sciences 5(4) (2010), 153–158.

[13]   J. H. He, An elementary introduction of recently developed asymptotic methods and nanomechanics in textile engineering, Internat. J. Modern Phys. B 22(21) (2008), 3487–3578.

[14]   J. H. He, Variational iteration method for Bratu-like equation arising in electrospinning, Carbohydrate Polymers 105 (2014), 229–230.

[15]   J. Kazdan and F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. Math. 101 (1975), 317–331.

[16]   E. Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley and Sons, Inc, Boston, USA, 2011.

[17]   J. D. Logan, An Introduction to Nonlinear Partial Differential Equations, 2nd Edition, John Wiley and Sons, Inc. Hoboken, New Jersey, 2008.

[18]   S. A. Odejide and Y. A. S. Aregbesola, A note on two dimensional Bratu problem, Kragujevac J. Math. 29 (2006), 49–56.

[19]   T. Semba and T. Suzuki, Structures of the solutions set from stationary system of chemotaxis, Adv. Math. Sci. Appl. 10 (2000), 191–224.

[20]   M. A. Soliman, Rational approximation for the one-dimensional Bratu equation, IJET-IJENS 13(05) (2013), 44–61.

[21]   M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Bollettino della Unione Matematica Italiana 8(1-B) (1998), 109–121.