Integral Boundary Value Problems for Implicit Fractional Differential Equations Involving Hadamard and Caputo-Hadamard fractional Derivatives

Download PDF


DOI: 10.46793/KgJMat2103.331K


In this paper, we examine the existence and uniqueness of integral boundary value problem for implicit fractional differential equations (IFDE’s) involving Hadamard and Caputo-Hadamard fractional derivative. We prove the existence and uniqueness results by utilizing Banach and Schauder’s fixed point theorem. Finally, examples are introduced of our results.


Implicit fractional differential equations, Hadamard fractional operators, boundary condition, fixed point theorem, existence and uniqueness.


[1]   Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a Gronwall type Inequality with applications, Filomat 31(17) (2017), 5457–5473.

[2]   Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl. 21(1) (2016), 661–681.

[3]   R. Almeida, D. Tavares and D. F. M. Torres, The Variable-Order Fractional Calculus of Variations, Springer Briefs in Applied Sciences and Technology, Springer, Cham, Switzerland, 2018.

[4]   A. Anguraj, P. Karthikeyan and J. J. Trujillo, Existence of solutions to fractional mixed integro-differential equations with nonlocal initial condition, Adv. Difference Equ. 2011 (2011), 1–12.

[5]   A. Babakhani and T. Abdeljawad, A Caputo fractional order boundary value problem with integral boundary conditions, J. Comput. Anal. Appl. 15(4) (2013), 753–763.

[6]   T. D. Benavides, An existence theorem for implicit differential equations in a Banach space, Ann. Mat. Pura Appl. 4 (1978), 119–130.

[7]   M. Benchohra and J. E. Lazreg, Exsitence results for nonlinear implicit fractional differential equations, Surv. Math. Appl. 9 (2014), 79–92.

[8]   Z. Dahmani and L. Tabharit, Fractional order differential equations involving Caputo derivative, Comput. Math. Appl. 4 (2014), 40–55.

[9]   D. B. Dhaigude and S. P. Bhairat, Local existence and uniqueness of solution for Hilfer-Hadamard fractional differential problem, Nonlinear Dyn. Syst. Theory 18(2) (2018), 144–153.

[10]   Y. Y. Gambo, F. Jarad, D. Baleanu and T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2014(10) (2014), 1-12.

[11]   R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

[12]   F. Jarad, T. Abdeljawad and D. Baleanu, Captuto-type modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2012(142) (2012), 1–8.

[13]   F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl. 10(5) (2017), 2607–2619.

[14]   P. Karthikeyan and R. Arul, Existence of solutions for Hadamard fractional hybrid differential equations with impulsive and nonlocal conditions, J. Fract. Calc. Appl. 9(1) (2018), 232–240.

[15]   P. Karthikeyan and R. Arul, Stability for impulsive implicit Hadamard fractional differential equations, Malaya J. Mat. 6(1) (2018), 28–33.

[16]   A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science, Amsterdam, 2006.

[17]   A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001), 1191–1204.

[18]   A. A. Kilbas and J. J. Trujillo, Hadamard-type integrals as G-transforms, Integral Transforms Spec. Funct. 14 (2003), 413–427.

[19]   N. I. Mahmudov, M. Awadalla and K. Abuassba, Hadamard and Caputo-Hadamard fractional differential equations with three point integral boundary conditions, Nonlinear Analysis and Differential Equations 5(6) (2017), 271–282.

[20]   S. K. Ntouyas and J. Tariboon, Fractional boundary value problems with multiple order of fractional derivatives and integrals, Electron. J. Differential Equations100 (2017), 1–18.

[21]   K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, London, 1974.

[22]   P. D. Phung and L. X. Truong, Existence of solutions to three-point boundary-value problems at resonance, Electron. J. Differential Equations 2016(115) (2016), 1–13.

[23]   I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[24]   D. Vivek, K. Kanagarajan and E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math. 15(1) (2018), 1–21.

[25]   J. R. Wang, Y. Zhou and M. Feckan, On recent development in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl. 64(10) (2012), 3008–3020.

[26]   Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.