Fractional Order Operational Matrix Method for Solving Two-Dimensional Nonlinear Fractional Volterra Integro-Differential Equations

Download PDF


DOI: 10.46793/KgJMat2104.571K


This article presents a numerical method for solving nonlinear two-dimensional fractional Volterra integral equation. We derive the Hat basis functions operational matrix of the fractional order integration and use it to solve the two-dimensional fractional Volterra integro-differential equations. The method is described and illustrated with numerical examples. Also, we give the error analysis.


Hat basis functions, operational matrix, error analysis, block pulse function, two-dimensional fractional integral equation.


[1]   M. Asgari and R. Ezzati, Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order, Appl. Math. Comput. 307 (2017), 290–298.

[2]   S. Abbasa and M. Benchohra, Fractional order integral equations of two independent variables, Appl. Math. Comput. 227 (2014), 755–761.

[3]    A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals 40 (2009), 521–529.

[4]   N. Aghazadeh and A. A. Khajehnasiri, Solving nonlinear two-dimensional Volterra integro-differential equations by block-pulse functions, Mathematical Sciences 7 (2013), 1–6.

[5]   E. Babolian and M. Mordad, A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions, Comput. Math. Appl. 62 (2011), 187–198.

[6]   E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl. 62 (2011), 2364–2373.

[7]   A. Ebadian and A. A. Khajehnasiri, Block-pulse functions and their applications to solving systems of higher-order nonlinear Volterra integro-differential equations, Electron. J. Differ. Equ. 54 (2014), 1–9.

[8]   A. Ebadian, H. Rahmani Fazli and A. A. Khajehnasiri, Solution of nonlinear fractional diffusion-wave equation by traingular functions, SeMA Journal 72 (2015), 37–46.

[9]   L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mechanical Systems and Signal Processing 5 (1991), 81–88.

[10]   W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophysical Journal 68 (1995), 46–53.

[11]   M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, A computational method for solving stochastic Ito-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys. 270 (2014), 402–415.

[12]   C. Hwang and Y. P. Shih, Parameter identification via Laguerre polynomials, Internat. J. Systems Sci. 13 (1982), 209–217.

[13]   M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, An efficient computational method for solving nonlinear stochastic Ito integral equations: application for stochastic problems in physics, J. Comput. Phys. 283 (2015), 148–168.

[14]   D. Jabari Sabeg, R. Ezzati and K. Maleknejad, A new operational matrix for solving two-dimensional nonlinear integral equations of fractional order, Cogent Math. Stat. 4 (2017), 1–11.

[15]   A. A. Khajehnasiri, Numerical Solution of Nonlinear 2D Volterra-Fredholm Integro-Differential Equations by Two-Dimensional Triangular Function, 2 Int. J. Appl. Comput. Math. (2016), 575–591.

[16]   A. Kilicman and Z. A. Al Zhour, Kronecker operational matrices for fractional calculus and some applications, Commun. Appl. Math. Comput. 187 (2007), 250–265.

[17]   F. Mirzaee and E. Hadadiyan, Application of two-dimensional hat functions for solving space-time integral equations, J. Appl. Math. Comput. 4 (2015), 1–34.

[18]   S. Momani, and M. A. Noor, Numerical methods for fourth-order fractional integro-differential equations, Appl. Math. Comput. 182 (2006), 754–760.

[19]   M. Mojahedfar, A. Tari Marzabad, Solving two-dimensional fractional integro-differential equations by legendre wavelets, Bull. Iranian Math. Soc. 43 (2017), 2419–2435.

[20]   S. Najafalizadeh and R. Ezzati, Numerical methods for solving two-dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix, Appl. Math. Comput. 280 (2016), 46–56.

[21]    P. N. Paraskevopoulos. Legendre series approach to identification and analysis of linear systems, IEEE Trans. Automat. Control 30 (1985), 585–589.

[22]   H. Rahmani Fazli, F. Hassani, A. Ebadian and A. A. Khajehnasiri, National economies in state-space of fractional-order financial system, Afr. Mat. 10 (2015), 1–12.

[23]   E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput. 176 (2006), 1–6.

[24]   H. Saeedi, N. Mollahasani, M. M. Moghadam and G. N. Chuev, An operational haar wavelet method for solving fractional Volterra integral equations, Int. J. Appl. Math. Comput. Sci. 21 (2011), 535–547.

[25]   M. Saeedi and M. M. Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS Wavelets, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1216–1226.

[26]   A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl. 59 (2010), 1326–1336.

[27]   M. P. Tripathi, V. K. Baranwal, R. K. Pandey and O. P. Singh, A new numerical algorithm to solve fractional differential equations based on operational matrix of generalized hat functions, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1327–1340.

[28]   M. Yi, J. Huang and J. Wei, Block pulse operational matrix method for solving fractional partial differential equation, Appl. Math. Comput. 221 (2013), 121–131.