### Fractional Order Operational Matrix Method for Solving Two-Dimensional Nonlinear Fractional Volterra Integro-Differential Equations Download PDF

Authors: A. KHAJEHNASIRI, M. A. KERMANI AND R. EZZATI

DOI: 10.46793/KgJMat2104.571K

Abstract:

This article presents a numerical method for solving nonlinear two-dimensional fractional Volterra integral equation. We derive the Hat basis functions operational matrix of the fractional order integration and use it to solve the two-dimensional fractional Volterra integro-diﬀerential equations. The method is described and illustrated with numerical examples. Also, we give the error analysis.

Keywords:

Hat basis functions, operational matrix, error analysis, block pulse function, two-dimensional fractional integral equation.

References:

   M. Asgari and R. Ezzati, Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order, Appl. Math. Comput. 307 (2017), 290–298.

   S. Abbasa and M. Benchohra, Fractional order integral equations of two independent variables, Appl. Math. Comput. 227 (2014), 755–761.

    A. Arikoglu and I. Ozkol, Solution of fractional integro-diﬀerential equations by using fractional diﬀerential transform method, Chaos Solitons Fractals 40 (2009), 521–529.

   N. Aghazadeh and A. A. Khajehnasiri, Solving nonlinear two-dimensional Volterra integro-diﬀerential equations by block-pulse functions, Mathematical Sciences 7 (2013), 1–6.

   E. Babolian and M. Mordad, A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions, Comput. Math. Appl. 62 (2011), 187–198.

   E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl. 62 (2011), 2364–2373.

   A. Ebadian and A. A. Khajehnasiri, Block-pulse functions and their applications to solving systems of higher-order nonlinear Volterra integro-diﬀerential equations, Electron. J. Diﬀer. Equ. 54 (2014), 1–9.

   A. Ebadian, H. Rahmani Fazli and A. A. Khajehnasiri, Solution of nonlinear fractional diﬀusion-wave equation by traingular functions, SeMA Journal 72 (2015), 37–46.

   L. Gaul, P. Klein and S. Kempﬂe, Damping description involving fractional operators, Mechanical Systems and Signal Processing 5 (1991), 81–88.

   W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophysical Journal 68 (1995), 46–53.

   M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, A computational method for solving stochastic Ito-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys. 270 (2014), 402–415.

   C. Hwang and Y. P. Shih, Parameter identiﬁcation via Laguerre polynomials, Internat. J. Systems Sci. 13 (1982), 209–217.

   M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, An eﬃcient computational method for solving nonlinear stochastic Ito integral equations: application for stochastic problems in physics, J. Comput. Phys. 283 (2015), 148–168.

   D. Jabari Sabeg, R. Ezzati and K. Maleknejad, A new operational matrix for solving two-dimensional nonlinear integral equations of fractional order, Cogent Math. Stat. 4 (2017), 1–11.

   A. A. Khajehnasiri, Numerical Solution of Nonlinear 2D Volterra-Fredholm Integro-Diﬀerential Equations by Two-Dimensional Triangular Function, 2 Int. J. Appl. Comput. Math. (2016), 575–591.

   A. Kilicman and Z. A. Al Zhour, Kronecker operational matrices for fractional calculus and some applications, Commun. Appl. Math. Comput. 187 (2007), 250–265.

   F. Mirzaee and E. Hadadiyan, Application of two-dimensional hat functions for solving space-time integral equations, J. Appl. Math. Comput. 4 (2015), 1–34.

   S. Momani, and M. A. Noor, Numerical methods for fourth-order fractional integro-diﬀerential equations, Appl. Math. Comput. 182 (2006), 754–760.

   M. Mojahedfar, A. Tari Marzabad, Solving two-dimensional fractional integro-diﬀerential equations by legendre wavelets, Bull. Iranian Math. Soc. 43 (2017), 2419–2435.

   S. Najafalizadeh and R. Ezzati, Numerical methods for solving two-dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix, Appl. Math. Comput. 280 (2016), 46–56.

    P. N. Paraskevopoulos. Legendre series approach to identiﬁcation and analysis of linear systems, IEEE Trans. Automat. Control 30 (1985), 585–589.

   H. Rahmani Fazli, F. Hassani, A. Ebadian and A. A. Khajehnasiri, National economies in state-space of fractional-order ﬁnancial system, Afr. Mat. 10 (2015), 1–12.

   E. A. Rawashdeh, Numerical solution of fractional integro-diﬀerential equations by collocation method, Appl. Math. Comput. 176 (2006), 1–6.

   H. Saeedi, N. Mollahasani, M. M. Moghadam and G. N. Chuev, An operational haar wavelet method for solving fractional Volterra integral equations, Int. J. Appl. Math. Comput. Sci. 21 (2011), 535–547.

   M. Saeedi and M. M. Moghadam, Numerical solution of nonlinear Volterra integro-diﬀerential equations of arbitrary order by CAS Wavelets, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1216–1226.

   A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order diﬀerential equations, Comput. Math. Appl. 59 (2010), 1326–1336.

   M. P. Tripathi, V. K. Baranwal, R. K. Pandey and O. P. Singh, A new numerical algorithm to solve fractional diﬀerential equations based on operational matrix of generalized hat functions, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1327–1340.

   M. Yi, J. Huang and J. Wei, Block pulse operational matrix method for solving fractional partial diﬀerential equation, Appl. Math. Comput. 221 (2013), 121–131.