On $\check \phi$-Semisymmetric $LP$-Kenmotsu Manifolds with a QSNMConnection Admitting Ricci So

Download PDF


DOI: 10.46793/KgJMat2105.815P


In the present work, we characterize Lorentzian para-Kenmotsu (briefly, LP-Kenmotsu) manifolds with a quarter-symmetric non-metric connection (briefly, QSNM-connection) ∇^ satisfying certain ϕ¨ -semisymmetric conditions admitting Ricci solitions. At the end of the paper, a 3-dimensional example of LP-Kenmotsu manifolds with a connection ^∇ is given to verify some results of the present paper.


LP-Kenmotsu manifold, QSNM-connection, ˇ
ϕ -semisymmetric manifolds, Ricci solitons.


[1]   A. Haseeb and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc. Parana. Mat. DOI 10.5269/bspm.40607.

[2]   A. Prakash and D. Narain, On a quarter-symmetric non-metric connection in a Lorentzian para-Sasakian manifold, Int. Electron. J. Geom. 4 (2011), 129–137.

[3]   A. K. Mondal and U. C. De, Quarter-symmetric non-metric connection on P-Sasakian manifolds, ISRN Geometry (2012), Article ID 659430, 14 pages.

[4]   D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, New York, 1976.

[5]   G. Chuman, On D-conformal curvature tensor, Tensor (N. S.) 46 (1983), 125–129.

[6]   K. Yano and M. Kon, Structures on Manifolds, Series in Pure Math. 3, World Science, Singapore, 1984.

[7]   M. Ahmad, C. Özgür and A. Haseeb, Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric non-metric connection, Kyungpook Math. J. 49 (2009), 533–543.

[8]   P. Alegre, Slant submanifolds of Lorentzian Sasakian and Para Sasakian manifolds, Taiwanese J. Math. 17 (2013), 897–910.

[9]   R. S. Hamilton, The Ricci flow on surfaces, in: Mathematics and General Relativity, Contemp. Math. 71, American Math. Soc., Providence, 1988, 237–262.

[10]   R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255–306.

[11]   S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N. S.) 29 (1975), 249–254.

[12]    U. C. De and A. K. Mondal, Hypersurfaces of Kenmotsu manifolds endowed with a quarter symmetric non-metric connection, Kuwait J. Sci. 39 (2012), 43–56.

[13]   U. C. De and P. Majhi, ϕ-semisymmetric generalized Sasakian space-forms, Arab J. Math. Sci. 21 (2015), 170–178.