Extensions of Meir-Keeler Contraction via w-Distances with an Application

Download PDF


DOI: 10.46793/KgJMat2204.533B


In this article, we conceive the notion of a generalized (α,ψ,q)-Meir-Keeler contractive mapping and then we investigate a fixed point theorem involving such kind of contractions in the setting of a complete metric space via a w-distance. Our obtained result extends and generalizes some of the previously derived fixed point theorems in the literature via w-distances. In addition, to validate the novelty of our findings, we illustrate a couple of constructive numerical examples. Moreover, as an application, we employ the achieved result to earn the existence criteria of the solution of a kind of non-linear Fredholm integral equation.


w-distance, α-orbital admissible map, weaker Meir-Keeler function, Fredholm integral equation.


[1]   Ü. Aksoy, E. Karapınar and İ. M. Erhan, Fixed points of generalized α-admissible contractions on b-metric spaces with an application to boundary value problems, J. Nonlinear Convex Anal. 17(6) (2016), 1095–1108.

[2]   A. S. S. Alharbi, H. H. Alsulami and E. Karapınar, On the power of simulation and admissible functions in metric fixed point theory, J. Funct. Spaces 2017 (2017), Article ID 2068163.

[3]   M. U. Ali, T. Kamran and E. Karapınar, An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstr. Appl. Anal. 2014 (2014), Article ID 141489.

[4]   H. Alsulami, S. Gülyaz, E. Karapınar and İ. M. Erhan, Fixed point theorems for a class of α-admissible contractions and applications to boundary value problem, Abstr. Appl. Anal. 2014 (2014), Article ID 187031.

[5]   S. A. Al-Mezel, C. M. Chen, E. Karapınar and V. Rakočević, Fixed point results for various α-admissible contractive mappings on metric-like spaces, Abstr. Appl. Anal. 2014 (2014), Article ID 379358.

[6]   H. Aydi, E. Karapınar and H. Yazidi, Modified F-contractions via α-admissible mappings and application to integral equations, Filomat 31(5) (2017), 1141–1148.

[7]   H. Aydi, E. Karapınar and D. Zhang, On common fixed points in the context of Branciari metric spaces, Results Math. 71(1) (2017), 73–92.

[8]   M. Arshad, E. Ameer and E. Karapınar, Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces, J. Inequal. Appl. 2016:63 (2016).

[9]   D. Baleanu, S. Rezapour and H. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. Roy. Soc. A 371(1990) (2013), Article ID 20120144.

[10]   F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72(3) (1966), 571–575.

[11]   C. M. Chen, Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces, Fixed Point Theory Appl. 2012:17 (2012).

[12]   O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Sci. Math. Jpn. 44(2) (1996), 381–391.

[13]   H. Lakzian, D. Gopal and W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl. 18(2) (2016), 251–266.

[14]   A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28(2) (1969), 326–329.

[15]   B. Mohammadi, S. Rezapour and N. Shahzad, Some results on fixed points of α-ψ-Ćirić generalized multifunctions, Fixed Point Theory Appl. 2013:24 (2013).

[16]   L. Pasicki, Some extensions of the Meir-Keeler theorem, Fixed Point Theory Appl. 2017:1 (2017).

[17]   O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2014:190 (2014).

[18]   P. Salimi, A. Latif and N. Hussain, Modified α-ψ-contractive mappings with applications, Fixed Point Theory Appl. 2013:151 (2013).

[19]   B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75(4) (2012), 2154–2165.

[20]   T. Senapati, L. K. Dey, A. Chanda and H. Huang, Some non-unique fixed point or periodic point results in JS-metric spaces, J. Fixed Point Theory Appl. 21:51 (2019).