Generalized Mixed Type Bernoulli-Gegenbauer Polynomials

Authors: Y. QUINTANA
DOI: 10.46793/KgJMat2302.245Q
Abstract:
The generalized mixed type Bernoulli-Gegenbauer polynomials of order α > −

Keywords:
Generalized Bernoulli polynomials, Gegenbauer polynomials, GBG polynomials, inversion formula, matrix representations, matrix-inversion formula.
References:
[1] L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Publising Co., New York, 1984.
[2] S. Araci, M. Acikgoz, A. Bagdasaryan and Ş. Ergoğan, The Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials, Turkish Journal of Analysis and Number Theory 1(1) (2013), 1–3. https://doi.org/10.12691/tjant-1-1-1
[3] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli Numbers and Zeta Functions, Springer Monographs in Mathematics, Springer, New York, 2014.
[4] R. Askey, Orthogonal Polynomials and Special Functions, CBMS-NSF Regional Conf. Ser. Appl. Math. 21 SIAM, Philadelphia, 1975.
[5] R. P. Boas Jr. and R. C. Buck, Polynomial Expansions of Analytic Functions, Springer-Verlag, Berlin, 1958.
[6] V. S. Buyarov, P. López-Artés, A. Martínez-Finkelshtein and W. Van Assche, Information entropy of Gegenbauer polynomials, J. Phys. A 33(37) (2000), 6549–6560. https://doi.org/10.1088/0305-4470/33/37/307
[7] J. I. de Vicente, S. Gandy and J. Sánchez-Ruiz, Information entropy of Gegenbauer polynomials of integer parameter, J. Phys. A 40(29) (2007), 8345–8361. https://doi.org/10.1088/1751-8113/40/29/010
[8] P. Hernández-Llanos, Y. Quintana and A. Urieles, About extensions of generalized Apostol-type polynomials, Results Math. 68 (2015), 203–225. https://doi.org/10.1007/s00025-014-0430-2
[9] D. S. Kim, S.-H. Rim and T. Kim, Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials, J. Inequal. Appl. 2012(237) (2012), 1–8. https://doi.org/10.1186/1029-242X-2012-227
[10] J. L. López and N. M. Temme, Large degree asymptotics of generalized Bernoulli and Euler polynomials, J. Math. Anal. Appl. 363 (2010), 197–208. https://doi.org/10.1016/j.jmaa.2009.08.034
[11] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308(1) (2005), 290–302. https://doi.org/10.1016/j.jmaa.2005.01.020
[12] L. M. Milne-Thomson, The Calculus of Finite Differences, MacMillan and Co., Ltd., London, 1933.
[13] L. M. Navas, F. J. Ruiz and J. L. Varona, Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Arch. Math. (Brno) 55 (2019), 157–165. https://doi.org/10.5817/AM2019-3-157
[14] N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
[15] V. G. Paschoa, D. Pérez and Y. Quintana, On a theorem by Bojanov and Naidenov applied to families of Gegenbauer-Sobolev polynomials, Commun. Math. Anal. 16 (2014), 9–18.
[16] Y. Quintana, W. Ramírez and A. Urieles, Generalized Apostol-type polynomial matrix and its algebraic properties, Math. Rep. (Bucur.) 21(2) (2019), 249–264.
[17] Y. Quintana, W. Ramírez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo 55(3) (2018), 1–29. https://doi.org/10.1007/s10092-018-0272-5
[18] S. Roman, The Umbral Calculus, Academic Press, Inc., Orlando, 1984.
[19] M. Shah, Applications of Gegenbauer (ultraspherical) polynomials in cooling of a heated cylinder, An. Univ. Timisoara, Ser. Sti. Mat. 8 (1970), 207–212.
[20] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, London, 2012.
[21] H. M. Srivastava, I. Kucukoğlu and Y. Simsek, Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials, J. Number Theory 181 (2017), 117–146. https://doi.org/10.1016/j.jnt.2017.05.008
[22] H. M. Srivastava, J.-L. Lavoie and R. Tremblay, A class of addition theorems, Canad. Math. Bull. 26 (1983), 438–445. https://doi.org/10.4153/CMB-1983-072-1
[23] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ltd., West Sussex, England, 1984.
[24] H. M. Srivastava, M. Masjed-Jamei and M. Reza Beyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inf. Sci. 12(5) (2018), 907–916. https://doi.org/10.18576/amis/120502
[25] H. M. Srivastava and Á. Pintér, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), 375–380. https://doi.org/10.1016/S0893-9659(04)90077-8
[26] H. M. Srivastava, P. G. Todorov, An explicit formula for the generalized Bernoulli polynomials, J. Math. Anal. Appl. 130 (1988), 509–513. https://doi.org/10.1016/0022-247X(88)90326-5
[27] G. Szegő, Orthogonal Polynomials, 4th Ed., Coll. Publ. Amer. Math. Soc. 23, Amer. Math. Soc., Providence, 1975.
[28] N. M. Temme, Special Functions. An Introduction to the Classical Functions of Mathematical Physics, John Wiley & Sons Inc., New York, 1996.
[29] Z. Zhang, Some identities involving generalized Gegenbauer polynomials, Adv. Differ. Equ. 2017 (391), 1–12. https://doi.org/10.1186/s13662-017-1445-2