Identities with Multiplicative Generalized $(\alpha,\alpha)$-Derivations of Semiprime Rings


Download PDF

Authors: G. S. SANDHU, A. AYRAN AND N. AYDIN

DOI: 10.46793/KgJMat2403.365S

Abstract:

Let R be a semiprime ring and α be an automorphism of R. A mapping F : R R (not necessarily additive) is called multiplicative generalized (α,α)-derivation if there exists a unique (α,α)-derivation d of R such that F(xy) = F(x)α(y) + α(x)d(y) for all x,y R. In the present paper, we intend to study several algebraic identities involving multiplicative generalized (α,α)-derivations on appropriate subsets of semiprime rings and collect the information about the commutative structure of these rings.



Keywords:

Semiprime ring, multiplicative generalized (α,α)-derivation, (α,α)-derivation, automorphism.



References:

[1]   S. Ali, B. Dhara, N. A. Dar and A. N. Khan, On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings, Beitr Algebra Geom. 56 (2015), 325–337. https://doi.org/10.1007/s13366-013-0186-y

[2]   M. J. Atteya, On generalized derivations of semiprime rings, Internat. J. Algebra 4(12) (2010), 591–598.

[3]   H. E. Bell, Some commutativity results involving derivations, in: S. T. Rizvi and S. M. A. Zaidi (Eds.), Trends in Theory of Rings and Modules, Anamaya Publisher, New Delhi, India, 2005.

[4]   H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30(1) (1987), 92–101. https://doi.org/10.4153/CMB-1987-014-x

[5]   M. Brešar and J. Vukman, Orthogonal derivations and extension of a theorem of Posner, Rad. Mat. 5 (1989), 237–246.

[6]   M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89–93. https://doi.org/10.1017/S0017089500008077

[7]   M. N. Daif and H. E. Bell, Remarks on derivations of semiprime rings, Int. J. Math. Math. Sci. 15(1) (1992), 205–206. https://doi.org/10.1155/S0161171292000255

[8]   B. Dhara, Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings, Beitr Algebra Geom. 53 (2012), 203–209. https://doi.org/10.1007/s13366-011-0051-9

[9]   B. Dhara, S. Ali and A. Pattanayak, Identities with generalized derivations in semiprime rings, Demo. Math. XLVI(3) (2013), 453–460. https://doi.org/10.1515/dema-2013-0471

[10]   B. Dhara and M. R. Mozumder, Some identities involving multiplicative generalized derivations in prime and semiprime rings, Bol. Soc. Parana. Mat. 36(3) (2018), 25–36. https://doi.org/10.5269/bspm.v36i1.30822

[11]   N. Divinsky, Rings and Radicals, University of Toronto Press, Toronto, 1965.

[12]   A. Fošner, M. Fošner and J. Vukman, Identities with derivations in rings, Glasnik Mate. 46(66) (2011), 339–349.

[13]   I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago, 1976.

[14]   D. Kumar and G. S. Sandhu, On multiplicative (generalized)-derivations in semiprime rings, Internat. J. Pure Appl. Math. 106(1) (2016), 249–257. https://doi.org/10.12732/ijpam.v106i1.19

[15]   E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(6) (1957), 1093–1100. https://doi.org/10.2307/2032686

[16]   S. K. Tiwari, R. K. Sharma and B. Dhara, Multiplicative (generalized)-derivations in semiprime rings, Beitr Algebra Geom. 58(1) (2017), 211–225. https://doi.org/10.1007/s13366-015-0279-x

[17]   S. K. Tiwari and R. K. Sharma, On Lie ideals with generalized (α,α)-derivations in prime rings, Rend. Circ. Mat. Palermo (2) 67(1) (2018), 493–499. https://doi.org/10.1007/s12215-018-0329-y