Fault-Tolerant Metric Dimension of Barycentric Subdivision of Cayley Graphs


Download PDF

Authors: A. AHMAD, M. A. ASIM AND M. BACA

DOI: 10.46793/KgJMat2403.433A

Abstract:

Metric dimension and fault-tolerant metric dimension of any graph G is subject to size of resolving set. It has become more important in modern GPS and sensors based world as resolving set ensures that in case of semi outage system is still scalable using redundant interfaces. Metric dimension of several interesting classes of graphs have been investigated like Cayley digraphs, Cartesian product of graphs, wheel graphs, convex polytopes and certain networks for categorical product of graphs. In this paper we used the phenomena of barycentric subdivision of graph and proved that fault-tolerant metric dimension of barycentric subdivision of Cayley graph is constant.



Keywords:

Metric dimension, fault-tolerant metric dimension, barycentric subdivision, Cayley graph.



References:

[1]   A. Ahmad, M. Imran, O. Al-Mushayt and S. A. U. H. Bokhary, On the metric dimension of barycentric subdivision of Cayley graph Cay(n m), Miskolc Math. Notes 16(2) (2015), 637–646. https://doi.org/10.18514/MMN.2015.1192

[2]   R. F. Bailey and P. J. Cameron, Basie size, metric dimension and other invariants of groups and graphs, Bull. London Math. Soc. 43 (2011), 209–242. https://doi.org/10.1112/blms/bdq096

[3]   R. F. Bailey and K. Meagher, On the metric dimension of Grassmann graphs, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 13(4) (2011), 97–104.

[4]   J. Cáceres, C. Hernando, M. Mora, I. M. Pelayoe and M. L. Puertas, On the metric dimension of infinite graphs, Electronic Notes in Discrete Math. 35 (2009), 15–20. https://doi.org/10.1016/j.dam.2011.12.009

[5]   J. Cáceres, C. Hernando, M. Mora, I. M. Pelayoe, M. L. Puertas, C. Seara and D. R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007), 423–441. https://doi.org/10.1137/050641867

[6]   G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 150 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0

[7]   M. Fehr, S. Gosselin and O. Oellermann, The metric dimension of Cayley digraphs, Discrete Math. 306 (2006), 31–41. https://doi.org/10.1016/j.disc.2005.09.015

[8]   M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.

[9]   J. L. Gross and J. Yellen, Graph Theory and its Applications, Chapman & Hall/CRC, New York, 2006.

[10]   F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191–195.

[11]   C. Hernando, M. Mora, P. J. Slater and D. R. Wood, Fault-tolerant metric dimension of graphs, Ramanujan Math. Soc. Lect. Notes Ser. 5 (2008), 81–85.

[12]   M. Imran, On the metric dimension of barycentric subdivision of Cayley graphs, Acta Math. Appl. Sin. Engl. Ser. 32(4) (2016), 1067–1072. https://doi.org/10.1007/s10255-016-0627-0

[13]   M. Imran and H. M. A. Siddiqui, Computing the metric dimension of convex polytopes generated by the wheel related graphs, Acta Math. Hungar. 149 (2016), 10–30. https://doi.org/10.1007/s10474-016-0606-1

[14]   I. Javaid, M. Salman, M. A. Chaudhry and S. Shokat, Fault-tolerance in resolvability, Util. Math. 80 (2009), 263–275.

[15]   I. Javaid, M. N. Azhar and M. Salman, Metric dimension and determining number of Cayley graphs, World Applied Sciences Journal 18(12) (2012), 1800–1812. https://doi.org/10.5829/idosi.wasj.2012.18.12.11112

[16]   J. Kratica, V. Kovačević-Vujčić, M. Čangalović and M. Stojanović, Minimal doubly resolving sets and the strong metric dimension of some convex polytopes, Appl. Math. Comput. 218 (2012), 9790–9801. https://doi.org/10.1016/j.amc.2012.03.047

[17]   H. M. A. Siddiqui and M. Imran, Computing the metric dimension of wheel related graphs, Appl. Math. Comput. 242 (2014), 624–632. https://doi.org/10.1016/j.amc.2014.06.006

[18]   P. J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549–579.

[19]   T. Vetrik and A. Ahmad, Computing the metric dimension of the categorical product of some graphs, Int. J. Comput. Math. 94(2) (2015), 363–371. https://doi.org/10.1080/00207160.2015.1109081