
Kvalitet i testiranje softvera 2022.

1 | P a g e

Kvalitet i testiranje softvera

• Način polaganja predmeta: sistem 70/30, 2 kolokvijuma

• Predavači iz privrede

• Tržište rada

• Zajednica QA Srbija: https://www.qaserbia.rs/sr/

Plan rada na vežbama

1. Maven

a. Kreiranje projekta, zavisnosti, paketi, verzije jave itd

2. Junit

a. Testiranje na nivou klasa

b. Arange, Act, Assert

c. DRY

3. Mockito

a. Object under testing

4. Hamcrest – Full packet

5. TestNg

a. Xml konfiuguracija

b. Logovanje – log4j

6. Selenium + TestNg

a. Linkovi

b. Forme

c. Logovanje, cookie

d. Sadržaj teksta

7. API test

a. Postman

8. JMeter

a. Performanse

b. Plan testiranja

c. Izveštaji

9. Jenkins + Git – automatsko testiranje na svaki merge grana

Kvalitet i testiranje softvera 2022.

2 | P a g e

a) Software Testing Introduction

1.1 What is software testing and why it's necessary?

Testing is a process rather than a single activity - there are series of activities involved. Test
process ensures that each and every component of the software meets the business and
technical requirements that guided its design and development and works as expected.

Your software is never going to be 100% right (bug free), and it's ok.

• Testing is necessary because we all make mistakes, all the time.

• Anything that we produce can go wrong.

• If we make mistakes, then we need to check our work.

• Others would see our mistakes better than we do.

• Our logic might miss something, that at first doesn't seem much important, but it can
affect the system in means that we have not intended to, and it can be something that
isn't strictly specified (in documentation or requirements), but it is expected to be
included and handled.

• Some of those mistakes are less important, but some of them are expensive (trucks)
or dangerous (autonomous cars, Veoneer, Uber,…).

• Testing was perceived as confirmation that developed system meets its
requirements but it's useful as it can save time, money and reduce risks.

Software testing can be divided into two steps:

• Verification: it refers to the set of tasks that ensure that software correctly
implements a specific function. -- "Are we building the product right?"

• Validation: it refers to a different set of tasks that ensure that the software that has
been built is traceable to customer requirements. -- "Are we building the right
product?"

What does this mean? During product development, we might not know every aspect. Things
get overseen, from small ones to big ones. Testing gives a fresh perspective on the
functionality, look and feel of the product. It is the outside view, and perspective is shifted
from the small part focus to a bigger picture. With fresh eyes, you can find mistakes and errors
in the logic of development, missing requirements that needed to be set, but nobody had the
idea in the first place that it can affect the product.

The more time and effort invested in meaningful testing activities, the more reliable the
product is. You will be able to guarantee, to some extent, that every part of software
(product) and all its integrated parts are working as they should. You can assure your
customers that you have made everything that you have committed to make and that
everything works as it was intended, that your product has good quality. From this
comes the term quality assurance (QA). ISO 9000 standard.

Kvalitet i testiranje softvera 2022.

3 | P a g e

There are a lot of misconceptions about what is software testing and what testers actually
do. Testing is a skill and it's constantly evolving, so let's see what software testing should be:

• Investigation - We may not always know what the outcome will be, but it's our job
to uncover information that helps people make decisions. It is much more than
comparing against a specification that has an expected result. We need to think
critically, ask difficult questions, pick up on risks, notice those things which at first
glance seem inconsequential, yet on close examination are much more important
and need investigating further.

• Exploration - Regardless of how comprehensive requirements are, they will never
be an exhaustive list. You won't know everything the software will do up front.
That's where exploratory testing comes in.

• Mitigation - one of the reasons we test, is to discover issues, risks, and other
information about a software product, enabling action to be taken so that the end
user is not unpleasantly impacted by them. This action might be:

o Fixing bugs

o Re-assessing and changing the original requirements

o Providing user assistance within the product

o Creating user documentation

o Communicating known issues to stakeholders

• Valuable - Software testing is a valuable activity in software development but often
misunderstood due to its unpredictable and creative nature. The lack of countable
things created by testers is one reason some people like to use test cases as a way of
measuring - they are a tangible, countable output. The value of testing extends
beyond test cases. The testing carried out during exploratory testing sessions may
not necessarily provide a defined set of test cases, however, the tester often finds
more interesting bugs by not following a scripted path.

• Communication - A massive part of a tester's job is communication. Testers provide
information about the quality of a software product, so it's important we
communicate this information accurately to enable the right decisions to be made.
Someone can start as a tester with few technical skills, but a real ability to
communicate with others and be clear about what it is you are saying is vital. As
testers, we need to make sure we use the correct words and phrasing so as to not be
ambiguous, and to remove the risk of misunderstanding. What you mean to say isn't
always what you end up saying, and often assumptions are made, and incorrect
actions are taken as a result of poor or insufficient communication.

• Potentially Infinite - All testing is a sampling. For every nontrivial product, there is
an unimaginable number of parameters with a great number of possible values. How
do you know you are testing the important ones? We can't test everything. It's part of
our job to make the decisions about what to test, understand the consequences of
only testing those things, and be able to explain our decisions.

Software testing shouldn't be perceived only as a task where the tester works through a list
of pre prepared tests or test cases giving a firm pass or fail result. If you have a user story or
set of requirements, it is, of course, important to make sure what you are testing adheres to
those things, however, it can be helpful to reframe acceptance criteria as 'rejection criteria'.
When the acceptance criteria are not met, the product is not acceptable, but if they are met,

Kvalitet i testiranje softvera 2022.

4 | P a g e

that doesn't mean the product has no issues. We will talk more about the acceptance criteria
in the upcoming chapters.

1.1.1 Some of the most notable defects

a) In 2009, one of Google developers added a single slash to a list of malicious sites, which
caused every single site to be listed as malicious. You can read a bit more here:

https://googleblog.blogspot.com/2009/01/this-site-may-harm-your-computer-on.html

b) In the case of Nasa's Mars Climate Orbiter, human error led to losing this very expensive

piece of technology. The craft was supposed to get into the Mars atmosphere and
stabilize its position there. Unfortunately, it crashed. That happened because some of the
software calculations were done in the metric system and a part of the software done by
a sub-contractor engineering firm didn't convert from English units to metric.

Figure 1. Nasa climate orbiter trajectory

c) Heathrow Airport T5 baggage system was tested with over 12000 luggage bags prior to
going live and it worked flawlessly. On the day of the release, it got stacked and caused
serious delays. The system didn't know how to handle a simple thing like what to do if a
passenger forgot something in the bag and if the bag was removed, and then put back.
This caused system to halt.

d) While testing we must keep in mind that our system might affect other systems and vice
versa. How serious consequences may be, we can see in the EDS child support system. In
2004, EDS introduced a highly complex IT system to the U.K.'s Child Support Agency
(CSA). At the exact same time, the Department for Work and Pensions (DWP) decided to

• Acceptance Criteria Definition 1: “Conditions that a software product must satisfy to
be accepted by a user, customer or other stakeholder.” (via Microsoft Press)

• Acceptance Criteria Definition 2: “Pre-established standards or requirements a
product or project must meet.” (via Google)

https://googleblog.blogspot.com/2009/01/this-site-may-harm-your-computer-on.html
https://www.seguetech.com/what-characteristics-make-good-agile-acceptance-criteria/
https://www.seguetech.com/what-characteristics-make-good-agile-acceptance-criteria/

Kvalitet i testiranje softvera 2022.

5 | P a g e

restructure the entire agency. The two pieces of software were completely incompatible,
and irreversible errors were introduced as a result. The system somehow managed to
overpay 1.9 million people, underpay another 700,000, had US$7 billion in uncollected
child support payments, a backlog of 239,000 cases, 36,000 new cases "stuck" in the
system, and has cost the UK taxpayers over US$1 billion to date.

As we can see from these few examples, quality testing of individual components, their
integration with other components and integration of the connected systems is very
important in order to get the desired goals of our product or software.

1.2 Seven Testing Principles

Principles defined here are not the only one that exists. There are new ones that emerged
with Agile methodologies. However, these below are still valid, and we will mention others.

Figure 2: Seven testing principles

1.2.1 Testing shows the presence of bugs

Testing shows that defects are present but cannot prove that there are no defects. This was
first coined by Edsger W. Dijkstra in the late 1960s. We can never be 100% sure that our
software is bug free. While testing and application or component, we can only show that
some part or module isn’t working the way it is supposed to, but we can’t show that it won’t
work correctly in every single possible case.

“Simplicity is a great virtue, but it requires hard work to achieve it and education to
appreciate it. And to make matters worse: complexity sells things better.” Edsger W.
Dijkstra

Kvalitet i testiranje softvera 2022.

6 | P a g e

1.2.2 Exhaustive testing is impossible

Testing all combinations of inputs and preconditions is virtually impossible when we have in
mind that we aren’t talking about trivial cases. There are testing technics and risk analyses
that we can use to maximize our confidence in the quality of the software or component and
prioritize testing efforts, but every single thing can’t be tested due to the complexity, time
constraints or some other factor we are faced with.

1.2.3 Early testing

Early testing is necessary, or at least good practice for a few reasons. When testing is done
early, testers get to know the product early and they can directly impact the development
with their insight. Defects and errors found early are easier to fix, and that approach saves
money.

Figure 3. Cost of fixing defects in different stages of development

https://www.softwaretestinghelp.com/7-principles-of-software-testing/

1.2.4 Defect clustering

A small number of modules usually contain most of the defects discovered during pre-
release testing or are responsible for most of the operational failures. Predicted defect
clusters, and the actually observed defect clusters in test or operation, are an important
input into risk analysis used to focus the test effort.

Defect Clustering in Software Testing is based on the Pareto principle, also known as the 80-
20 rule, where it is stated that approximately 80% of the problems are caused by 20% of the
modules.

https://www.softwaretestinghelp.com/7-principles-of-software-testing/

Kvalitet i testiranje softvera 2022.

7 | P a g e

Figure 4: Defect clustering sample

In this image, the principle of defect clustering in software testing can be seen that most of
the defects are clustered in particular sections of the application e.g., Product Details,
Reviews and Search Results Page for an e-commerce website and the remaining defects in
other areas.

1.2.5 The pesticide paradox

The phenomenon that the more you test software, the more immune it becomes to your
tests – just as insects eventually build up resistance and the pesticide no longer works. If we
write our tests once, don’t maintain them and just execute them, eventually, they will stop
finding bugs. This is the case where the project evolves, and our tests become outdated. A
good practice is to maintain our tests as the project progresses, include new and fresh ideas,
we need to try to use new valid and invalid test data to test the behavior of software,
documentation or module. Even a new test should be written periodically. Like insects
evolve to, and pesticides aren’t effective in killing them, so happens with the tests if the
project progresses, and the tests aren’t maintained.

1.2.6 Testing is context dependent

Testing is done different in different contexts. For example, safety-critical industrial control
software is tested differently from an e-commerce mobile app (figure 5). As another
example, testing in an Agile project is done differently than testing in a sequential lifecycle
project.

Kvalitet i testiranje softvera 2022.

8 | P a g e

Figure 5. Context depending testing

1.2.7 Absence of errors fallacy

Some organizations expect that testers can run all possible tests and find all possible defects,
but principles 2 and 1, respectively, tell us that this is impossible. Further, it is a fallacy (i.e., a
mistaken belief) to expect that just finding and fixing many defects will ensure the success of
a system. For example, thoroughly testing all specified requirements and fixing all defects
found could still produce a system that is difficult to use, that does not fulfill the users' needs
and expectations, or that is inferior compared to other competing systems. This can mean
that the system is intuitive for use from an engineer's perspective, but for the user, that
doesn't have specific knowledge it can seem counter intuitive, or there is more efficient or
aesthetically pleasing product on the market.

Figure 6: Absence of errors — user unable to do basic actions

Coming to the absence of errors fallacy, imagine you developed an e-commerce system and
tested it completely. All the identified defects have been fixed and retested. Let's say 99% of
the defects have been rectified. Management is pretty sure about the product quality with
respect to defects. Now when the system is demonstrated to a client, what if you get

Kvalitet i testiranje softvera 2022.

9 | P a g e

feedback saying "Though it is so-called defect-free, still this is not what I wanted. I wanted a
simple UI that can handle the user load"?

Everybody in the Test team was confident about the product 'quality' (absence of errors) but
in the end, it proved to be false (fallacy) the system is not usable; it doesn't fulfill the client's
expectations.

