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FIGURE 10.7. K-means clustering performed six times on the data from Fig-
ure 10.5 with K = 3, each time with a different random assignment of the ob-
servations in Step 1 of the K-means algorithm. Above each plot is the value of
the objective (10.11). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

10.3.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.
In this section, we describe bottom-up or agglomerative clustering.

bottom-up

agglomerative
This is the most common type of hierarchical clustering, and refers to
the fact that a dendrogram (generally depicted as an upside-down tree; see
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FIGURE 10.8. Forty-five observations generated in two-dimensional space. In
reality there are three distinct classes, shown in separate colors. However, we will
treat these class labels as unknown and will seek to cluster the observations in
order to discover the classes from the data.

Figure 10.9) is built starting from the leaves and combining clusters up to
the trunk. We will begin with a discussion of how to interpret a dendrogram
and then discuss how hierarchical clustering is actually performed—that is,
how the dendrogram is built.

Interpreting a Dendrogram

We begin with the simulated data set shown in Figure 10.8, consisting of
45 observations in two-dimensional space. The data were generated from a
three-class model; the true class labels for each observation are shown in
distinct colors. However, suppose that the data were observed without the
class labels, and that we wanted to perform hierarchical clustering of the
data. Hierarchical clustering (with complete linkage, to be discussed later)
yields the result shown in the left-hand panel of Figure 10.9. How can we
interpret this dendrogram?
In the left-hand panel of Figure 10.9, each leaf of the dendrogram rep-

resents one of the 45 observations in Figure 10.8. However, as we move
up the tree, some leaves begin to fuse into branches. These correspond to
observations that are similar to each other. As we move higher up the tree,
branches themselves fuse, either with leaves or other branches. The earlier
(lower in the tree) fusions occur, the more similar the groups of observa-
tions are to each other. On the other hand, observations that fuse later
(near the top of the tree) can be quite different. In fact, this statement
can be made precise: for any two observations, we can look for the point in
the tree where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis, indicates how
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FIGURE 10.9. Left: dendrogram obtained from hierarchically clustering the data
from Figure 10.8 with complete linkage and Euclidean distance. Center: the den-
drogram from the left-hand panel, cut at a height of nine (indicated by the dashed
line). This cut results in two distinct clusters, shown in different colors. Right:
the dendrogram from the left-hand panel, now cut at a height of five. This cut
results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.
This highlights a very important point in interpreting dendrograms that

is often misunderstood. Consider the left-hand panel of Figure 10.10, which
shows a simple dendrogram obtained from hierarchically clustering nine
observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 10.10, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
the similarity of two observations based on the location on the vertical axis
where branches containing those two observations first are fused.
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FIGURE 10.10. An illustration of how to properly interpret a dendrogram with
nine observations in two-dimensional space. Left: a dendrogram generated using
Euclidean distance and complete linkage. Observations 5 and 7 are quite similar
to each other, as are observations 1 and 6. However, observation 9 is no more
similar to observation 2 than it is to observations 8, 5, and 7, even though obser-
vations 9 and 2 are close together in terms of horizontal distance. This is because
observations 2, 8, 5, and 7 all fuse with observation 9 at the same height, approx-
imately 1.8. Right: the raw data used to generate the dendrogram can be used to
confirm that indeed, observation 9 is no more similar to observation 2 than it is
to observations 8, 5, and 7.

Now that we understand how to interpret the left-hand panel of Fig-
ure 10.9, we can move on to the issue of identifying clusters on the basis
of a dendrogram. In order to do this, we make a horizontal cut across the
dendrogram, as shown in the center and right-hand panels of Figure 10.9.
The distinct sets of observations beneath the cut can be interpreted as clus-
ters. In the center panel of Figure 10.9, cutting the dendrogram at a height
of nine results in two clusters, shown in distinct colors. In the right-hand
panel, cutting the dendrogram at a height of five results in three clusters.
Further cuts can be made as one descends the dendrogram in order to ob-
tain any number of clusters, between 1 (corresponding to no cut) and n
(corresponding to a cut at height 0, so that each observation is in its own
cluster). In other words, the height of the cut to the dendrogram serves
the same role as the K in K-means clustering: it controls the number of
clusters obtained.
Figure 10.9 therefore highlights a very attractive aspect of hierarchical

clustering: one single dendrogram can be used to obtain any number of
clusters. In practice, people often look at the dendrogram and select by eye
a sensible number of clusters, based on the heights of the fusion and the
number of clusters desired. In the case of Figure 10.9, one might choose to
select either two or three clusters. However, often the choice of where to
cut the dendrogram is not so clear.
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The term hierarchical refers to the fact that clusters obtained by cutting
the dendrogram at a given height are necessarily nested within the clusters
obtained by cutting the dendrogram at any greater height. However, on
an arbitrary data set, this assumption of hierarchical structure might be
unrealistic. For instance, suppose that our observations correspond to a
group of people with a 50–50 split of males and females, evenly split among
Americans, Japanese, and French. We can imagine a scenario in which the
best division into two groups might split these people by gender, and the
best division into three groups might split them by nationality. In this case,
the true clusters are not nested, in the sense that the best division into three
groups does not result from taking the best division into two groups and
splitting up one of those groups. Consequently, this situation could not be
well-represented by hierarchical clustering. Due to situations such as this
one, hierarchical clustering can sometimes yield worse (i.e. less accurate)
results than K-means clustering for a given number of clusters.

The Hierarchical Clustering Algorithm

The hierarchical clustering dendrogram is obtained via an extremely simple
algorithm. We begin by defining some sort of dissimilarity measure between
each pair of observations. Most often, Euclidean distance is used; we will
discuss the choice of dissimilarity measure later in this chapter. The algo-
rithm proceeds iteratively. Starting out at the bottom of the dendrogram,
each of the n observations is treated as its own cluster. The two clusters
that are most similar to each other are then fused so that there now are
n−1 clusters. Next the two clusters that are most similar to each other are
fused again, so that there now are n − 2 clusters. The algorithm proceeds
in this fashion until all of the observations belong to one single cluster, and
the dendrogram is complete. Figure 10.11 depicts the first few steps of the
algorithm, for the data from Figure 10.9. To summarize, the hierarchical
clustering algorithm is given in Algorithm 10.2.

This algorithm seems simple enough, but one issue has not been ad-
dressed. Consider the bottom right panel in Figure 10.11. How did we
determine that the cluster {5, 7} should be fused with the cluster {8}?
We have a concept of the dissimilarity between pairs of observations, but
how do we define the dissimilarity between two clusters if one or both of
the clusters contains multiple observations? The concept of dissimilarity
between a pair of observations needs to be extended to a pair of groups
of observations. This extension is achieved by developing the notion of
linkage, which defines the dissimilarity between two groups of observa-

linkage
tions. The four most common types of linkage—complete, average, single,
and centroid—are briefly described in Table 10.2. Average, complete, and
single linkage are most popular among statisticians. Average and complete
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Algorithm 10.2 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the

(
n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby

inversion
two clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)
of the hierarchical clustering algorithm will depend on the type of linkage
used, as well as on the choice of dissimilarity measure. Hence, the resulting
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FIGURE 10.11. An illustration of the first few steps of the hierarchical
clustering algorithm, using the data from Figure 10.10, with complete linkage
and Euclidean distance. Top Left: initially, there are nine distinct clusters,
{1}, {2}, . . . , {9}. Top Right: the two clusters that are closest together, {5} and
{7}, are fused into a single cluster. Bottom Left: the two clusters that are closest
together, {6} and {1}, are fused into a single cluster. Bottom Right: the two clus-
ters that are closest together using complete linkage, {8} and the cluster {5, 7},
are fused into a single cluster.

dendrogram typically depends quite strongly on the type of linkage used,
as is shown in Figure 10.12.

Choice of Dissimilarity Measure

Thus far, the examples in this chapter have used Euclidean distance as the
dissimilarity measure. But sometimes other dissimilarity measures might
be preferred. For example, correlation-based distance considers two obser-
vations to be similar if their features are highly correlated, even though the
observed values may be far apart in terms of Euclidean distance. This is
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Average Linkage Complete Linkage Single Linkage

FIGURE 10.12. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.

an unusual use of correlation, which is normally computed between vari-
ables; here it is computed between the observation profiles for each pair
of observations. Figure 10.13 illustrates the difference between Euclidean
and correlation-based distance. Correlation-based distance focuses on the
shapes of observation profiles rather than their magnitudes.
The choice of dissimilarity measure is very important, as it has a strong

effect on the resulting dendrogram. In general, careful attention should be
paid to the type of data being clustered and the scientific question at hand.
These considerations should determine what type of dissimilarity measure
is used for hierarchical clustering.
For instance, consider an online retailer interested in clustering shoppers

based on their past shopping histories. The goal is to identify subgroups
of similar shoppers, so that shoppers within each subgroup can be shown
items and advertisements that are particularly likely to interest them. Sup-
pose the data takes the form of a matrix where the rows are the shoppers
and the columns are the items available for purchase; the elements of the
data matrix indicate the number of times a given shopper has purchased a
given item (i.e. a 0 if the shopper has never purchased this item, a 1 if the
shopper has purchased it once, etc.) What type of dissimilarity measure
should be used to cluster the shoppers? If Euclidean distance is used, then
shoppers who have bought very few items overall (i.e. infrequent users of
the online shopping site) will be clustered together. This may not be desir-
able. On the other hand, if correlation-based distance is used, then shoppers
with similar preferences (e.g. shoppers who have bought items A and B but
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FIGURE 10.13. Three observations with measurements on 20 variables are
shown. Observations 1 and 3 have similar values for each variable and so there
is a small Euclidean distance between them. But they are very weakly correlated,
so they have a large correlation-based distance. On the other hand, observations
1 and 2 have quite different values for each variable, and so there is a large
Euclidean distance between them. But they are highly correlated, so there is a
small correlation-based distance between them.

never items C or D) will be clustered together, even if some shoppers with
these preferences are higher-volume shoppers than others. Therefore, for
this application, correlation-based distance may be a better choice.
In addition to carefully selecting the dissimilarity measure used, one must

also consider whether or not the variables should be scaled to have stan-
dard deviation one before the dissimilarity between the observations is
computed. To illustrate this point, we continue with the online shopping
example just described. Some items may be purchased more frequently than
others; for instance, a shopper might buy ten pairs of socks a year, but a
computer very rarely. High-frequency purchases like socks therefore tend
to have a much larger effect on the inter-shopper dissimilarities, and hence
on the clustering ultimately obtained, than rare purchases like computers.
This may not be desirable. If the variables are scaled to have standard de-
viation one before the inter-observation dissimilarities are computed, then
each variable will in effect be given equal importance in the hierarchical
clustering performed. We might also want to scale the variables to have
standard deviation one if they are measured on different scales; otherwise,
the choice of units (e.g. centimeters versus kilometers) for a particular vari-
able will greatly affect the dissimilarity measure obtained. It should come
as no surprise that whether or not it is a good decision to scale the variables
before computing the dissimilarity measure depends on the application at
hand. An example is shown in Figure 10.14. We note that the issue of
whether or not to scale the variables before performing clustering applies
to K-means clustering as well.
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FIGURE 10.14. An eclectic online retailer sells two items: socks and computers.
Left: the number of pairs of socks, and computers, purchased by eight online shop-
pers is displayed. Each shopper is shown in a different color. If inter-observation
dissimilarities are computed using Euclidean distance on the raw variables, then
the number of socks purchased by an individual will drive the dissimilarities ob-
tained, and the number of computers purchased will have little effect. This might be
undesirable, since (1) computers are more expensive than socks and so the online
retailer may be more interested in encouraging shoppers to buy computers than
socks, and (2) a large difference in the number of socks purchased by two shoppers
may be less informative about the shoppers’ overall shopping preferences than a
small difference in the number of computers purchased. Center: the same data
is shown, after scaling each variable by its standard deviation. Now the number
of computers purchased will have a much greater effect on the inter-observation
dissimilarities obtained. Right: the same data are displayed, but now the y-axis
represents the number of dollars spent by each online shopper on socks and on
computers. Since computers are much more expensive than socks, now computer
purchase history will drive the inter-observation dissimilarities obtained.

10.3.3 Practical Issues in Clustering

Clustering can be a very useful tool for data analysis in the unsupervised
setting. However, there are a number of issues that arise in performing
clustering. We describe some of these issues here.

Small Decisions with Big Consequences

In order to perform clustering, some decisions must be made.

• Should the observations or features first be standardized in some way?
For instance, maybe the variables should be centered to have mean
zero and scaled to have standard deviation one.
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