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IMPACT, an acronym for lnterweaving Mathematics Pedagogy and Content for Teaching, 
is a series of textbooks dedicated to mathematics education and suitable for teacher 
education. The leading principle of the series is the integration of mathematics 
content with topics from research on mathematics learning and teaching. Elements 
from the history and the philosophy of mathematics, as well as curricular issues, are 
integrated as appropriate.

In mathematics, there are many textbook series representing internationally 
accepted canonical curricula, but such a series has so far been lacking in mathemat-
ics education. It is the intention of IMPACT to fill this gap.

The books in the series will focus on fundamental conceptual understanding 
of the central ideas and relationships, while often compromising on the breadth 
of coverage. These central ideas and relationships will serve as organizers for the 
structure of each book. Beyond being an integrated presentation of the central ideas 
of mathematics and its learning and teaching, the volumes will serve as guides to 
further resources.

We are proud to present a book on the topic of modelling by two renowned 
authors. What prompted us to address this area? Only a few years ago, Felix Klein’s 
third volume in the Elementarmathematik series – having been published in 1902 for 
the first time – appeared in English translation. This volume is – roughly speaking – 
devoted to “applied mathematics”. Thus, applied mathematics should be an integral 
part of school mathematics, as Klein claimed one hundred years ago.

Working in mathematics is inextricably linked with translating from real-world 
contexts into mathematics and back. This is what “Mathematical Modelling” 
means, and thus modelling is significant for modern mathematics. Modelling 
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1.1 Prologue

Mathematics has been around for at least five thousand years. Throughout its exis-
tence, mathematics has been applied to deal with a host of issues, situations and 
phenomena outside of mathematics itself. This fact is reflected in the five-fold 
nature of mathematics (Niss, 1994): Mathematics is a fundamental science that deals 
with its own internally generated issues; it is an applied science that addresses prob-
lems and questions in scientific disciplines other than mathematics; it is a system 
of instruments for practice in culture and society; it is a field of aesthetic expression and 
experience; and it is an educational subject with a multitude of different manifestations 
that, in various ways, reflect the other four facets of mathematics.

This means that mathematics as a discipline never lived in “splendid isolation” 
from the surrounding world. On the contrary, there have always been intimate 
connections between mathematics and other disciplines and fields of practice – 
oftentimes collectively called “extra-mathematical domains”. When mathematics 
and one or more of these domains meet, the encounter must involve both math-
ematics and the domain(s); neither side can be discarded. Sometimes the encounter 
is easy and straightforward, e.g., when only counting and elementary arithmetic 
are involved. Sometimes it is highly complex and difficult, as when a sophisticated 
mathematical theory is brought to bear on a new domain for the first time like for 
example in the theory of general relativity.

The purpose of involving mathematics in dealing with situations belonging to 
extra-mathematical domains is to help answer questions that arise in such situations. 
Perhaps the questions simply cannot be answered without the use of mathemat-
ics. Perhaps they can be answered in a better, faster or easier manner by way of 
mathematics. Invoking and activating mathematics to deal with a situation in an 
extra-mathematical domain (which for brevity will simply be called a “context” 
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when appropriate) necessarily happens via an explicit or implicit construction of a 
mathematical model. Constructing such a model – or, differently put, undertaking 
mathematical modelling – consists of representing the main elements of a context with 
mathematical entities and the questions pertaining to the context with mathematical 
questions. The whole enterprise then consists of seeking answers to mathematical 
questions and interpreting these answers in terms of the context.

If the application of mathematics to other areas or disciplines is brought about by 
mathematical modelling, the people using mathematics in such contexts must be able 
to undertake mathematical modelling. Since an increasing proportion of the population 
will use mathematics in such contexts, the education system must equip learners with 
this ability; contributing to making this happen is the driving force behind this book.

1.2 What is this book about?

This book, which forms part of the IMPACT series, is about the learning and teach-
ing of mathematical modelling. It has been written based on the following four 
observations, most of which will be further explained and elaborated on in various 
chapters of the book.

The first observation is that all students must learn to put mathematics to use in 
a wide variety of contexts. It is essential for societies and their citizens that these 
contexts include everyday practical and leisurely life with family and friends, occu-
pational and professional life in the work force, the civic and societal life of citizens 
being concerned with culture and society, as well as life in specialised professional 
fields and academic disciplines that use mathematics to a significant extent. This 
is the main reason why mathematics is, by far, the world’s most taught subject, 
measured by the number of students who study it in primary, secondary or tertiary 
education or by the number of lesson hours mathematics is taught. Since math-
ematics is used outside of the discipline itself by way of mathematical models and 
mathematical modelling, the education system must enable students to work with 
mathematical models and to undertake mathematical modelling.

The second observation is that mathematical modelling is, cognitively speaking, 
a difficult and demanding enterprise. Knowledge of and skills in pure mathematics, 
even if very solid and well founded, are not sufficient prerequisites for students to 
be(come) able to engage effectively and successfully in modelling activities. Much 
more is needed. In this book, this observation is further investigated and explained 
by a broad array of theoretical and empirical considerations.

The third observation is that mathematical modelling can, in fact, be success-
fully taught to and learnt by students. This requires teaching and learning to take 
place in environments that are diverse, multi-faceted and activity rich. For that to 
happen, we need teachers who are mathematically, didactically and pedagogically 
competent and committed. In particular, teachers need to be well versed in the 
teaching and learning of mathematical modelling themselves. This observation, 
too, will be further discussed in theoretical and empirical terms in this book, with 
particular regard to how the conditions for successful teaching and learning of 
mathematical modelling can be met.
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The fourth and final observation is that, in spite of the previous observation, 
there is still a variety of strong barriers and challenges to be overcome if we want 
to ensure models and modelling an appropriate place and role in the teaching and 
learning of mathematics in ordinary classrooms throughout the world. We can 
observe, though, that more recent mathematics curricula and standards in several 
countries (e.g., the USA, Germany, Singapore, China, and Chile, to name only a 
few) include modelling as a compulsory component. Nevertheless, these barri-
ers and challenges call for further investment of mental and material resources in 
research and development on teaching and learning mathematical modelling at all 
education levels.

Against this background, the primary focus of this book will be the teaching and 
learning of modelling, whereas the teaching and learning of given models and appli-
cations of mathematics will be of derived or secondary importance. Our overarching 
ambition with this book is to provide an up-to-date outline of the state of modelling 
in mathematics education and to indicate how modelling can be used in educational 
settings, with an emphasis on the secondary school level. We will take stock of the 
progress made in research and development, with a glance at selected educational 
practices in the field. One may describe this book as a research-based introduction 
to the didactics of mathematical modelling for interested parties who (are to) teach 
mathematical modelling at schools or universities, including teacher training institu-
tions, or want to engage in professional development activities. It aims to provide 
important insights into the learning and teaching of mathematical modelling.

The structure of the book is the following. Chapter 2 is devoted to setting the 
stage of mathematical models and modelling by offering a detailed general concep-
tual and theoretical framework of the fundamental notions involved in this area of 
study. The chapter also deals with the cognitive aspects of mathematical modelling 
and with the role of models and modelling in the education system. In order to 
to provide flesh and blood to the largely theoretical exposition in Chapter 2, in 
Chapter 3, we present several modelling examples as a varied source of instantiations 
of our considerations and expositions in the chapters to come. Even though the 
examples are presented without specific regard to their actual or potential role in the 
teaching and learning of mathematics, each of them is accessible to lower or upper 
secondary students and, of course, to their teachers. Moreover, all of them have, in 
some form or another, been used in real classrooms. The concepts of modelling com-
petency and (sub-)competencies are introduced and discussed in Chapter 4. Chapter 
5 focuses on the challenges and barriers to the inclusion of mathematical modelling 
in mathematics education that have been encountered in different places. These must 
be overcome if mathematical modelling is to become a substantive component of 
the teaching and learning of mathematics. While multiple references to theoretical 
and empirical research are found in all chapters of the book, Chapter 6 presents a 
comprehensive survey of empirical research on a variety of key aspects of mathemati-
cal modelling in mathematics education. Research and development in the didactics 
of mathematical modelling are the main focus of this book. However, educational 
practices of mathematical modelling at different levels must not be excluded from 
this book, especially since it is still an unusual – if not outright esoteric – topic in 
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4 Introduction

many mathematics curricula around the world. Chapter 7 is therefore devoted to 
presenting a few selected cases of different states of implementation of mathematical 
modelling in the teaching and learning of mathematics. Finally, Chapter 8 attempts, 
in a more global way, to take stock of what we know and have accomplished in 
the field of didactics of mathematical modelling, providing a point of departure for 
looking into future needs and challenges.

By its very nature, this book is, in large part, an exposition of what already exists 
and what has been done in the field of mathematical modelling, by others as well 
as by ourselves. However, in several places, we offer conceptualisations, approaches 
and perspectives that are new to the field. In addition, we include some novel views 
on the field. We realise that these are our views and that others working in this field 
may prefer other takes.

A final remark on the nature of this book in the fauna of other books about 
mathematics education is warranted. The didactics of mathematical modelling dif-
fer from many other sub-fields of mathematics education in that it is not entirely 
subsumed under the umbrella of mathematics. Extra-mathematical needs, demands, 
facts, aspects and elements are necessarily present in crucial ways in any kind of 
mathematical modelling, even in its highly idealised and stylised manifestations. 
One consequence of this is that the teaching and learning of mathematical model-
ling unavoidably must transgress the borders of mathematics to move into domains 
ruled by other sorts of preoccupations, forms of knowledge and methodologies 
than the ones characteristic of mathematics. Therefore, mathematical modelling 
cannot be addressed solely by mathematical means, so students and teachers engag-
ing in mathematical modelling must locate, adopt and activate knowledge outside 
of mathematics as a prerequisite to or a part of their modelling work. For many a 
student or teacher, this presents major challenges.

1.3 What this book is not about

In mathematics education research and development, it is not unusual to invoke the 
term “modelling” in several ways, many of which have nothing to do with math-
ematical modelling as the term is understood and used in this book.

The most widespread alternative use of the term “modelling” is encountered 
in attempts to model students’ mathematical thinking, mathematical problem 
solving, mathematical mistakes, mathematical behaviour, etc. In such attempts, 
“modelling” means establishing a conceptual and theoretical framework designed 
to make sense of students’ engagement with mathematics by interpreting their 
actions, behaviour and statements. Only in the special case of “modelling stu-
dents’ mathematical modelling” (see Lesh et al., 2010) is this notion of modelling 
relevant to this book. In the theory of cognitive apprenticeship (see, e.g., Brown 
et al., 1989), the first of several phases is also called “modelling”. In this phase, the 
teacher demonstrates, as an expert (a role model), how to tackle a typical task in 
the topic area that the students are to address. If this task is a modelling task, this 
means the teacher serves as a model of how to model a situation. Again, this use 
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of “model” and “modelling” according to cognitive apprenticeship is not what 
we are dealing with in this book.

Quite a different notion of “modelling” is found outside of mathematics 
 education – in the logical foundations of mathematics and in mathematical logic 
as a separate topic – in which a concrete mathematical theory is perceived as a 
realisation – a model – of some abstract axiom system. From this perspective, math-
ematical modelling is the activity of identifying mathematical entities which display 
the properties of a given axiom system. The present book does not adopt this 
perspective.

Similarly, it often happens in work within the discipline of mathematics that 
one mathematical theory, say linear algebra (or general topology), is introduced 
to model another mathematical theory, say Euclidean geometry (or real analysis). 
While such (intra-mathematical) modelling is indeed both very important and 
highly illuminating, this notion of modelling does not form part of this book. A 
somewhat analogous situation is found with regard to the notions of horizontal and 
vertical mathematisation, initially proposed by Treffers in 1978 (Treffers, 1993) and 
later supported by Freudenthal (1991). Horizontal mathematisation is the process 
of building a mathematical model of some situation outside of mathematics, which 
is what we call mathematical modelling in this book. Vertical mathematisation, in 
contrast, is the process of subjecting a problem formulated within mathematics 
to internal mathematical treatment in order to solve the problem. In the context 
of mathematics education, vertical mathematisation is typically introduced once a 
horizontal mathematisation has been undertaken. In this book, we have not adopted 
the notion of vertical mathematisation as this term is at odds with key notions in 
our exposition of mathematical modelling.
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2.1  Basic mathematical models – models as sheer 
representation

For centuries, mathematics has been used for multiple purposes, and in lots of dif-
ferent ways, in a wide variety of extra-mathematical domains, i.e., areas outside of 
mathematics itself. Extra-mathematical domains can be other academic disciplines 
or professional fields; they can be vocations, professions or other areas of practice; 
they can belong to societal and social spheres; or they can be part of everyday life 
with families and friends. The very point of involving mathematics in such contexts 
is that mathematics is expected to be useful for dealing with situations arising in 
these contexts. The purpose of this involvement may either be to come to grips 
with certain already existing aspects of the context and domain at issue, or it may be 
to design new elements, systems or features for implementation within the domain. 
We shall say much more about this in section 2.5.

What do we mean by a mathematical model and by mathematical modelling?
Every time mathematics is used outside of mathematics itself, a so-called mathe-

matical model is necessarily involved, either explicitly or – very often - implicitly. But 
what is a mathematical model? Let us answer first a slightly more general question: 
What is a model? A model is an object (which is oftentimes in itself an aggregation 
of objects), which is meant to stand for – to represent - something else. The model 
is meant to capture only certain features of the entity it stands for and is thus a 
simplified representation of this entity. This simplified representation necessarily – 
and intentionally – involves some loss of information, hopefully information of less 
significance in the context at issue.

Simply put, a mathematical model is a special kind of model, namely a represen-
tation of aspects of an extra-mathematical domain by means of some mathematical 
entities and relations between them. In its simplest possible form, the situation can 
be depicted by the following diagram (Figure 2.1):

2
CONCEPTUAL AND THEORETICAL 
FRAMEWORK – MODELS AND 
MODELLING

What and why?



Conceptual and theoretical framework  7

Here, the “amoebic blob” on the left stands for the extra-mathematical domain, 
of which some selected aspects are to be represented by mathematical entities 
belonging to some chosen mathematical domain, M, depicted by the box on the 
right-hand side. The mathematical representation takes place by way of some kind 
of “mapping”,1 f, represented by the arrow between the boxes, which translates 
selected objects from D into selected objects from M. It is important to be aware 
that the selection of those objects in D that are to be given a mathematical rep-
resentation is usually not at all an automatic process; it is a conscious act of will 
on the part of the modeller. The same is true of the choice of the domain M; the 
selection of the objects in M chosen to represent the objects in D; and the specific 
way in which the objects in D are linked to objects in M, as captured by the “map-
ping” f. The outcomes of all these selection and choice processes are designated in 
condensed form by the triple (D, f, M) which then may serve as a formal definition 
of a mathematical model (Niss, 1989). The fact that there are many choices and 
decisions involved in establishing the model makes it clear that establishing a model 
is indeed a process. This process is termed mathematical modelling. Often, several 
different combinations of choices and decisions might be taken into consideration 
to model a given situation. This means that a mathematical model only in trivial 
cases is uniquely determined by the situation. It often happens that people, when 
speaking about a mathematical model, refer only to M, or a subset thereof, as the 
mathematical model, without involving D or f. Defining a mathematical model 
as the triple (D, f, M) makes it clear that any mathematical model is a model of 
something in an extra-mathematical domain, not just a collection of mathematical 
entities, such as a certain function; a set of algebraic, functional or differential equa-
tions; or a planar or spatial geometric object, to mention just a few.

Even this simplest possible sort of model, which only consists of the sheer rep-
resentation of extra-mathematical entities by mathematical ones, has a widespread 
use, even if the terms “model” and “modelling” are seldom used in such simple 
cases. One will sometimes speak about “coding” the set of objects instead of about 
modelling it. For example, in most cities in the world, buildings or main doors in 
buildings are equipped with street numbers that allow one to find the place where 
somebody lives or works without having to consult a lengthy and wordy descrip-
tion of the appearance of the building or door. As several people may have the 
same street number, you will usually not be able to identify a particular individual 

FIGURE 2.1 The minimal modelling diagram
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solely on the basis of his or her address. Therefore, a code need not be invertible. In 
this case, D consists of the collection of inhabitants on, say, a certain street, whereas 
M may be chosen to consist of the set N of natural numbers or some finite subset 
thereof.

Similarly, bar codes of, say, supermarket articles are commonplace all over the 
world. They are designed to identify the specific category to which a given article 
belongs and to derive information from this category, e.g., the current price of the 
article. Given the bar code, one can identify the category of the article but usually 
not the individual specimen within the category because this is not significant to 
the intended use of the bar code in supermarkets. So, this coding, too, is not invert-
ible to the individual level. Here, D is chosen to consist of all the articles for sale in a 
supermarket. First, each article is coded by a finite string of base-10 digits which is 
specific to the category of the article. Let us denote the set of feasible finite strings 
of base-10 digits by M’ and the mapping from D to M’ by f’. This gives rise to the 
model (D, f’, M’). Next, each digit is then coded by a short sequence of black and 
white line segments of varying thickness (i.e., very slim rectangles) such that the 
number code of the article is represented by a finite string of such line segments, the 
collection of which is denoted by M. There is a one-to-one correspondence – let’s 
denote it by g: M’ → M – between the finite strings of base-10 digits in M’ and 
finite strings of black and white line segments in M. This means that a given bar 
code provides a geometric representation in M of any article in the supermarket and 
hence – because of the one-to-one correspondence between M and M’ – a multi-
digit number representation in base 10 of the article. The mathematical properties 
of the numbers are only used to construct a final control digit to check whether a 
given article code is a legal one. So, the bar code model is (D, f, M) if we set f = g°  f’, 
i.e., define f as the composite of f’ and g. The very point of using bar codes on arti-
cles instead of numbers is that the bar codes can be easily read with almost no errors 
by optical code scanners, whereas reading a string of digits, which may be written 
in a multitude of different ways, would be either much slower or more error prone.

Sometimes, sheer representation models are in fact invertible. For example, this 
is the case with car number plates in most countries (or states), where number 
plates contain alphanumeric codes establishing a one-to-one representation of all 
registered cars in the country (or state). As another example, many countries (e.g., 
Denmark and Sweden) have each of their citizens represented by a uniquely deter-
mined person identification number (a string of natural numbers in base 10), social 
security number or whatever the number is called in a particular country. The 
point of using such numbers to represent individuals is to obtain a compact, easily 
recordable one-to-one correspondence between individuals and numbers. The only 
“number feature” used in such a representation is that there is usually some arith-
metic operation that has to be performed on the digits (e.g., multiplying each digit 
with a certain natural number and then adding the resulting numbers) to ensure 
that the number is legal according to the rules of the country at issue. No other 
mathematical operations are used on the identification numbers. Thus, adding or 
multiplying – say - identity numbers are meaningless operations even though they 
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Here, it is possible to go from a particular code object in the relevant part of M 
back to a uniquely determined object in D that is coded by this code object. In 
general, going back from the mathematical domain M to the extra-mathematical 
domain D is called “de-mathematisation” (or interpretation and, in special cases, 
such as in the examples above, de-coding). Here, de-mathematisation takes place by 
simply inverting the mapping f.

2.2 Mathematical models with a structure

Normally, however, the terms “mathematical models” and “modelling” are primar-
ily used in situations in which more structure than offered by sheer coding is either 
already present or is being requested. Despite this, it is analytically significant for the 
sake of the conceptual scope of our definitions to speak of mathematical models and 
modelling also in the minimal cases discussed in section 2.1. However, if we move 
into more complex contexts and situations that call for really utilising mathemati-
cal properties of the representing entities, more structure typically must be invoked 
or introduced. The call for more structure comes from a wish to represent certain 
properties of the relevant objects in D, as well as relationships between such objects 
by mathematical means. This, then, must be reflected in mathematical properties of 
the mathematical domain M, of the objects in M chosen to represent the objects in 
D, and of the mathematical relationships between those objects. For illustration, let 
us think of someone who wants to make a savings arrangement in a bank by mak-
ing a fixed instalment every month for a set period and then wants a prediction of 
the accumulated fortune after a certain number of years. Answering this question 
by mathematical modelling requires, as a minimum, not just representation of instal-
ments, terms, fixed or varying interest rates, sums, etc. It also requires the utilisation 

FIGURE 2.2 Minimal modelling with inversion

are, of course, technically possible. In principle, any system of establishing a one-to-
one correspondence between the domain of interest and a domain of representation 
might be considered.

Invertible representation models can be captured by the following diagram (Fig-
ure 2.2):
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of mathematical properties of sums of number series, e.g., geometric series, relevant 
formulae, etc. (also see example 5 in Chapter 3).

The very reason we are interested in models with some mathematical properties 
is that such models often allow us to pose and answer questions concerning the extra-
mathematical domain under consideration. Before moving on, let us illustrate the 
situation by means of a familiar and rather simple example. We consider modelling 
the cost of a taxi ride from S (starting point) to A (arrival point) in a certain city 
C. It is well known that taxi tariff systems vary from place to place and from one 
taxi company to another. All sorts of different conditions may apply concerning the 
size of the taxi, the time of the day chosen for the ride, the number of passengers, 
the kinds and amounts of luggage, whether the taxi is ordered by radio or hailed 
on the street, and whether it drives through pay roads or serves an airport. Also, the 
presence and size of a basic rate, the length of the ride or the waiting time at street-
lights or in traffic jams are key factors in determining the cost of a ride. Oftentimes, 
much of this information is available from companies’ home pages. For someone 
who wants to model the price of a taxi ride in C under various circumstances, the 
extra-mathematical domain, D, consists of the “universe” of taxi rides in C and 
their costs, and the modelling situation embedded in this domain is taxi rides from 
S to A. In principle, modelling such a ride would involve taking all sorts of factors 
and conditions, like the ones mentioned above, into consideration and would be a 
substantial and time-consuming task. The modeller, therefore, wants to first model 
a much-simplified situation (which might later be expanded or generalised) corre-
sponding to the typical needs of a taxi passenger. Imagine that the modeller decides 
to focus on a taxi ride for one person without luggage in a car from one particular 
company during working hours (9am-5pm) and thus wants to answer the ques-
tion: What does such a ride cost? To answer this question, the modeller makes some 
simplifying assumptions pertaining to the situation. For example, the modeller may 
assume that the taxi is called by radio; that the ride takes place along a particular 
route; and that the cost depends only on an initial fixed basic cost b and the variable 
distance travelled, x, and the rate d (the cost per unit distance), whereas waiting time, 
pay-zone fees, and other factors are left out of consideration at this point. More 
specifically, the modeller chooses to model the situation by the following linear2 real 
function, c, of one variable:

c(x) = dx + b.

Here d, x and b are non-negative real numbers, and it is assumed that the distance 
component of the rate is an additive term proportional to the distance travelled. If 
the currency is DKK and the distance, x, travelled is measured in km, c(x) and b are 
measured in DKK, d in DKK/km.

The mathematical domain, M, may be chosen to consist of the world of real lin-
ear functions of one variable. We may also choose a larger domain, for instance, the 
world of all real functions of one variable, the world of linear functions of several 
variables, or the world of all real functions of any number of variables.



Conceptual and theoretical framework  11

In order to answer the question “What does a taxi ride cost?”, we need to know 
the basic rate, the rate for 1 km, and the distance travelled. Consulting the website 
of one of the taxi companies in C, we learn that the basic rate is 38 DKK and the 
rate per km is 15.55 DKK, so the function is specified to be:

c(x) = 15.55x + 38.

According to available maps, the distance between S and A is 12.9 km along the 
stipulated route. So, we can now translate our real-world question into a corre-
sponding mathematical question: What is the value c (12.9)?

Answering extra-mathematical questions by way of mathematical modelling is 
brought about by translating these questions into mathematical questions concern-
ing the mathematical entities selected to represent the extra-mathematical entities in 
focus of our attention and then to seek mathematical answers to the translated questions. 
The answering of the mathematised questions takes place by performing mathemati-
cal processes, including calculations and computations, and by making mathematical 
inferences to obtain mathematical conclusions and results within the mathematical 
domain of the model. In the example above, the mathematical question is answered 
by simply performing the calculation 15.55 · 12.9 + 38, yielding 238.60. It is then 
expected – or at least hoped - that the mathematical answers obtained can be trans-
lated back – de-mathematised - into answers pertaining to the extra-mathematical 
domain being modelled. In our example, this amounts to attaching a unit (DKK) to 
the number obtained to formulate an answer: The taxi ride costs DKK 238.60.

We have just seen an example of what we may call the fundamental mathematical 
modelling process involving structure, which can be represented by the following dia-
gram (Figure 2.3):

FIGURE 2.3 Diagram of fundamental mathematical modelling involving structure
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In a given modelling situation, the fact that we might have been able to obtain 
mathematical answers to our mathematised questions and to de-mathematise 
these answers into extra-mathematical answers does not necessarily imply that the 
answers obtained meet the needs and demands that drove our modelling enterprise 
in the first place. To check whether this is the case, we must validate the answers of 
the model, i.e., examine the extent to which the answers obtained are relevant and 
useful for the purpose for which the model was constructed, in addition to being 
solid and well-founded. Do the answers correspond to and cover the needs associ-
ated with the initiating questions? Are the answers complete or only partial? Do 
they cover all relevant instances of the situation being modelled, or do they depend 
on special circumstances and conditions? How sensitive are the outcomes to the 
assumptions made, to the accuracy of available data, input variables, parameter val-
ues, etc.? In our taxi example, the answer obtained is not unreasonable. It gives an 
indication of the cost of a ride under the constraints involved. However, the answer 
does depend on special circumstances and conditions that easily might have been 
different. Other hours for the ride, other routes, or other taxi companies might have 
been considered. Moreover, waiting time at traffic lights and in queues, which is 
known to be significant, has not been considered. Therefore, the cost arrived at will 
be the minimum cost for such a ride.

Validating the answers produced by a model is but one instance of a wider issue: 
How good is the model? More broadly, we would like to evaluate the model (also see 
Czocher, 2018). Although the ultimate purpose of evaluating a model is to decide 
whether to accept or reject it, it is not a matter of deciding whether or not it is cor-
rect or incorrect but rather a matter of finding out how well it suits its purposes as 
we have defined them. In addition to validating the model answers, there are basically 
three additional ways to undertake an evaluation of the model. One is a qualitative 
assessment of the structural properties of the model – are the phenomena and features 
displayed by the model compatible with what is already known about the extra-
mathematical reality? How robust is the structural behaviour of the model beyond the 
specific setting within which it was built? How dependent is it on the assumptions 
made? Can it be generalised or modified to cover a broader class of situations?

The second way is to assess the quantitative features of the model. This can consist 
in, for instance, confronting quantitative model outputs with known data – e.g., 
to see whether output values lie within reasonable or useful ranges – or display 
a satisfactory degree of accuracy, or whether the model is capable of capturing 
quantitative aspects of the extra-mathematical domain not directly represented in 
the model. Also, do statistical analyses, if carried out, lead to a fair degree of con-
firmation, e.g., in terms of statistical significance, of the conclusions? Moreover, it 
will be important to know whether the model is under-parametrised, which means 
that there are not enough data to allow for a complete specification of the model 
or for a satisfactory estimation of non-measurable parameters. Or whether – on the 
 contrary – the model is over-parametrised, which means that a multitude of differ-
ent parameter values can be generated based on the data available, thus giving rise 
to the model being indeterminate.



Conceptual and theoretical framework  13

The third way to evaluate a model is to compare and contrast it with possible 
alternative models meant or supposed to cover the same extra-mathematical domains 
for similar or related purposes, especially models based on assumptions that dif-
fer from the ones made for the model under consideration. In the case of the taxi 
example, an obvious alternative – or perhaps extended – model to consider would 
be to include waiting time. The website of the company mentioned above tells us 
that the additional cost of 1 minute of waiting time is DKK 7.14. If we want to take 
this into account, we must introduce a new mathematisation, for instance:

c’(x, t) = 15.55x + 7.14t + 38,

with non-negative real numbers x and t, where the unit of the coefficient in front 
of t, which is measured in minutes, is DKK/minute. This mathematisation requires 
us to invoke a mathematical domain that is rich enough to include real linear 
functions of two variables. This change of model also leads to a change of the 
extra-mathematical questions we want to ask and to the mathematised versions of 
these questions.

2.3 The modelling cycle

By adding the processes of validating the model outputs and evaluating the model, 
we have dealt with the most essential components of mathematical modelling. Taken 
together, these components constitute the basic version of what is usually called the 
modelling cycle: mathematisation; mathematical treatment; de-mathematisation; and 
answer validation and model evaluation – depicted in Figure 2.4. It is essential  

FIGURE 2.4 The basic modelling cycle
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to understand that this modelling cycle is not meant to be a description of the 
sequence of actions that people must take, or do actually take, in the order listed, when 
building a model. People’s actual modelling itineraries may take all sorts of forms, 
starting anywhere within or outside the cycle, repeating some sub-processes several 
times, skipping others, etc. (see section 6.3 for further details). The modelling cycle 
therefore should be understood as an analytic (ideal-typical) reconstruction of the steps of 
modelling necessarily present, explicitly or implicitly, as an instrument for capturing 
and understanding the principal processes of mathematical modelling.

Depending on which aspects of the key steps of the basic modelling cycle are of 
special interest in each context, the cycle can be expanded by zooming in on the 
details of these aspects. If, for instance, the focus is finding or choosing a situation 
worth further consideration within a large, not clearly delineated extra-mathematical 
domain, it is significant to look into ways to delimit that domain. Such delimitations 
must be compatible with the very purpose of dealing with the extra-mathematical 
domain. If, on the other hand, the focus is on the posing and specification of the 
extra-mathematical questions to be considered, it is essential to select the elements 
and features that are deemed important for the situation at issue and discard those 
that aren’t. It is also essential to make extra-mathematical assumptions concerning 
the properties of the elements selected and the relationships between them. The role 
of all these processes, which take place within D, is to tailor the extra-mathematical 
domain in order to produce a reduced extra-mathematical situation with accom-
panying questions from it and to prepare that situation for translation into some 
mathematical domain, i.e., for mathematisation. We therefore call the collection of 
these processes pre-mathematisation. Essential components of pre-mathematisation 
include specifying the elements of the situation that should be considered, the fea-
tures and properties to be considered, as well as known or assumed relationships 
between the elements, including the mechanisms that govern those relationships. 
As an example of pre-mathematisation, we may consider our taxi case presented 
in the previous section. Here, all the considerations involved in deciding which 
aspects and conditions to pay attention to and which to discard that led to a (much) 
reduced modelling situation and corresponding questions constitute the first part of 
pre-mathematisation. The remainder of the pre-mathematisation consists of all the 
assumptions made to specify the situation further.

The result of pre-mathematisation is a tailored, condensed, structured and possibly 
idealised extra-mathematical situation – a reduced extra-mathematical situation cum ques-
tions – containing exactly those demands, elements, factors, components, assumptions 
and relationships that should be subjected to mathematisation. Depending on the 
situation and the questions at issue, it is sometimes even possible to organise pre-
mathematisation into an extra-mathematical model – sometimes called a real model 
(Blum, 1985) or a real-world model (Kaiser & Stender, 2013) – of the situation. It is 
important to keep in mind that even though pre-mathematisation is performed with 
a view to the subsequent process of mathematisation, it still belongs to the extra-
mathematical world in which the context is embedded. The same is true of a possible 
extra-mathematical model, in case one is established.
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One such expansion of the modelling cycle, zooming in further on pre-mathemati-
sation, can be found in Niss (2010). A slightly edited version is given in Figure 2.5.

FIGURE 2.5 The modelling cycle

FIGURE 2.6 The Blomhøj-Jensen modelling cycle

Another version of the modelling cycle can be found in Blomhøj & Jensen 
(2007) (see Figure 2.6.)
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In this diagram, the steps preceding that of mathematisation focus on formulat-
ing a task inspired by the perceived reality, giving rise to a more specific domain 
of enquiry and further on (as a result of systematisation) to a more or less well-
delineated system, which is then subjected to mathematisation. At the other end of 
the cycle, the model results, after interpretation and evaluation, generate actions or 
insights pertaining to the perceived reality. In Galbraith and Stillman (2006), we find 
the following version of the modelling cycle (Figure 2.7):

FIGURE 2.7 The Galbraith-Stillman modelling cycle

in which the “messy real-world situation” is only part of the modelling process 
insofar as it gives rise to a real-world problem statement. The other components 
of the modelling cycle closely resemble those in the modelling cycle diagrams pre-
sented above, except that here particular attention is being paid to an additional 
component, namely a report of the modelling work undertaken, which implies the 
existence of some kind of audience or recipient of this work.

The modelling cycle found in Blum and Leiss (2007) (see Figure 2.8) tacitly 
operates with the presence of a modelling task given to a modeller – suggesting a 
school context in which a teacher assigns tasks to students. The diagram pays par-
ticular attention to the modeller’s need to understand the task before simplifying 
and structuring it into, first, a situation model – i.e., a mental image of the funda-
mental characteristics of the situation and its essential elements – and, second, into 
a real model, all of which are cognitive processes referring to the domain of reality. 
Finally, the flavour of a task set from outside is amplified by the presence of the last 
step in the cycle, “presenting” the work to an audience or a recipient, e.g., a class 
or a teacher.
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Many more modelling cycles can be found in the literature (for an overview, see 
Borromeo Ferri, 2006; Perrenet & Zwanefeld, 2012; or Blum, 2015). All the differ-
ent “models of the modelling process” describe and visualise connections between 
an extra-mathematical world and mathematics, and they identify certain steps on 
the pathway from the extra-mathematical world into mathematics and back again.

As is clear from the above examples, some of the cycles have other purposes than 
describing the generic steps of modelling. For instance, they may focus on the cog-
nitive processes of the modeller or on making a report or a presentation of the work 
done to some audience. If, in a given context, the focus of interest is the cogni-
tive aspects of the process of mathematising, or obtaining, within the mathematical 
domain M, answers to the mathematical questions resulting from the mathematisa-
tion by way of mathematical problem solving, the modelling cycle can be expanded 
accordingly. The same is true if attention is being paid to the sub-processes involved 
in de-mathematisation or validation. We come back to the cognitive aspects of 
modelling in section 2.6.

2.4 Some special kinds of modelling

A special kind of modelling deserves particular attention when we discuss the 
modelling process. It is customary in a variety of extra-mathematical fields to 
engage in so-called curve-fitting, or more broadly regression analysis. Oftentimes a 
modeller is faced with a set of pairs of linked real-valued data, (x1, y1), (x2, y2), 
. . ., (xn, yn), where it is assumed that there is some sort of a functional relationship 
between the x’s and the y’s, which can be used to make interpolations or extrapola-
tions in between or beyond the data set, but the specific functional relationship is 
not known. The modeller then wants to come up with a functional relationship to 
mathematise the situation.

mathematics

1 Constructing

2 Simplifying/ 
Structuring

3 Mathematising

4 Working 
mathematically

5 Interpreting

6 Validating

7 Exposing

mathematical 
model & problem

mathematical
results

real
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FIGURE 2.8 The Blum-Leiss modelling cycle
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In case the modeller, based on knowledge about the extra-mathematical context 
and situation, has reasons to believe that the functional relationship is of a par-
ticular type – for example a trigonometric, linear or polynomial function, power, 
exponential or logarithmic function – the mathematisation step falls under what 
has already been said above. Specifying the exact specimen among the functions of 
the given type then becomes an issue of using the data set at hand to procure the 
parameter values needed to identify the specific function. This is what happens in 
the phase of mathematical treatment, which also may comprise statistical methods 
and techniques, including statistical regression analysis. In other words, in this case, 
nothing new is happening in the modelling process compared to what has been said 
in section 2.3.

However, in case the modeller has no clue of the function type of the data set, the 
mathematisation step takes a very different form. The modeller will have to impose 
some type of function onto the data set (typically after having entered the pairs 
as points in a coordinate system) without having chosen its type based on struc-
tural or substantive considerations pertaining to the extra-mathematical domain. 
On what grounds, then, can the modeller impose a function type on the data set? 
Either by being visually inspired by the location of the data points in the coordi-
nate system – perhaps the points seem to approximately lie on a straight line; on 
an S-shaped curve; on a curve displaying regular, damped or increasing oscillations; 
on a steeply increasing or decreasing curve with or without apparent asymptotes, 
etc. – which suggests to consider a certain function type, or by making use of the 
fact that through n (n > 1) points in a coordinate system, no two of which have the 
same x-value, there is a uniquely determined polynomial of degree at most n – 1 
whose graph contains the n points. Determining that polynomial and assuming that 
the polynomial also represents all potential data points in the relevant domain then 
provides a mathematisation of the situation and a model of it (see also Burkhardt, 
2018, p. 62).

From a formal point of view, these two sorts of mathematisation are completely 
acceptable on a par with any other sort of mathematisation. But this modelling pro-
cess is markedly truncated since no pre-mathematisation was involved in generating 
the mathematisation. In fact, one might perceive the mathematisation as resulting 
from a particular kind of mathematical treatment of the data set. This means that 
the first part of the modelling cycle is not relevant in this context. However, math-
ematical treatment, de-mathematisation, answer validation and model evaluation, 
the last phases of the modelling process, can be dealt with in the very same way as 
with any model obtained after first undertaking pre-mathematisation. Similarly, the 
corresponding parts of the modelling cycle also remain relevant in this situation.

Another notion to consider is that of applied mathematical problem solving. 
In the past, this notion was often used as a synonym for mathematical model-
ling, especially in the USA, or to designate – primarily in the UK – mathematical 
problem solving in the special context of theoretical mechanics or fluid dynamics, 
both branches of physics in which physical theories provide the framework under 
which modelling has to be subsumed and performed. Today, the notion of applied 
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mathematical problem solving seems to have taken on a new meaning, namely 
to designate mathematical problem solving arising from problems pertaining to 
an extra-mathematical domain for which a mathematical model has already been 
established prior to the problem-solving activity. For example, consider a situation 
in which taxi company A charges pA(x,t) = 15.55x + 7.14t + 38 for an x km long  
ride with waiting time t (see section 2.2), whereas company B charges pB(x,t) = 
16x + 6t + 36 for the same ride, and the question is: “Under what circumstances 
should company A, company B, be chosen?” Like in the case of curve-fitting, we 
are still dealing with a mathematical model but not with a full-fledged modelling 
process because the model has been given and both the modelling process and the 
modelling cycle are truncated. So unless the applied mathematical problem solver 
was also actually him- or herself responsible for constructing the model, we do not, 
in this book, consider applied mathematical problem solving to be part of math-
ematical modelling.

While curve-fitting and applied mathematical problem solving involve little 
or no pre-mathematisation and mathematisation, the so-called Fermi problems 
lie at the other end of the scale. Typical examples of Fermi problems are: “How 
many piano tuners are there in the city of Chicago?”; “What is the area covered 
by a litre of water spilled on the floor?”; “How many leaves of grass are there 
in a 1m2 grass lawn?”; “How many people can be seated for dinner in a gym 
hall?”; “How many hairs does a girl have?”, to mention just a few. While they 
are, in principle, closed when it comes to the kind of answers sought (mostly 
just a number or a quantity), they are extremely open when it comes to choos-
ing a framework within which they can be specified and dealt with. This means 
that most of the work involved in solving such a Fermi problem has to do with 
pre-mathematisation, with information and data collection, simplifications, ide-
alisations and assumptions as the predominant components. Typically, there is a 
wide range of possible and feasible assumptions (What is the percentage of piano 
players in a city, and how often does a piano have to be tuned? What is the size of 
a girl’s scalp, and how densely do hairs grow?). Correspondingly, there will be a 
very wide range of possible and reasonable answers. Let us take the hair problem 
as an example. Taking rough measures, we can estimate the size of a girl’s scalp as 
the area of a hemisphere with radius 9 cm, so 2p92 cm2, i.e., ca. 500 cm2, with a 
range of reasonable areas between 350 cm2 and 700 cm2. The density of human 
hair depends on several factors including hair colour, gender, age, and geographi-
cal region, so let us imagine the question is posed in a suburban American grade 
9 class. The number of hairs per cm2 can be determined by counting the hairs 
in a circa 1 cm2 region of some girls’ scalps in this class. Assume that the average 
number turns out to be ca. 230 hairs per cm2, with a range between 150 and 300. 
A rough estimate of the number of hairs is 500 · 230 = 115,000. If we calculate 
the extremes, we end up with a result between 350 · 150 = 52,500 and 700 · 300 = 
210,000. The extremes differ by a factor of 2 · 2 = 4, but the order of magnitude 
is 100,000, so it is reasonable to say: The number of hairs of a girl (in this class) is 
(very roughly) 100,000.



20 Conceptual and theoretical framework

2.5 Descriptive and prescriptive modelling

So far, we have outlined the fundamentals of mathematical modelling of contexts 
and situations that already exist within some extra-mathematical domain. The over-
arching purpose of this kind of modelling is to come to grips with aspects of 
the given context and situation that are of interest and significance to the mod-
eller. Thus, the modeller may be interested in capturing and understanding the essential 
structure and organisation of the situation as well as the phenomena and behaviour it 
displays. The modeller may, furthermore, be interested in identifying the mechanisms 
that are (co-)responsible for the phenomena and the behaviour observed to explain 
these. The modeller may also want to predict future behaviour and the conditions under 
which a certain behaviour will or will not occur, perhaps in terms of different future 
scenarios. Sometimes, the ultimate goal of the modelling enterprise is to pave the way 
for and underpin the making of decisions based on an analysis of the situation offered by 
the model. It is common practice to use the term descriptive modelling for such modelling, 
aiming at capturing and coming to grips with existing contexts and situations.

There is, however, a different category of modelling purposes that do not pri-
marily deal with capturing and understanding an existing reality but attempt to 
create or organise reality. This is the case when we want to design and construct mate-
rial objects (e.g., roads, buildings, bridges, containers, utensils, tools, homeware, etc.; 
see example 4 about paper formats in Chapter 3) to fulfil certain requirements and 
specifications. It is also the case when we want to define financial instruments such 
as schemes for investment or for amortisation of loans, to construct rules of taxation 
(e.g., for income or consumption taxes), to exploit limited resources (e.g., materials 
or substances), or to harvest renewable resources (such as agricultural products, fish 
or seafood, wood from forests, or wind or water power) at favourable times. And 
the same holds when we want to determine a feasible or even optimal location of an 
object or a facility (e.g., a transmitter mast, a fire station or a hospital) within some 
domain or terrain or when we want to schedule activities, operations or processes 
to be conducted while allocating corresponding resources (e.g., vaccination pro-
grammes or production plans or routes and itineraries to be followed by transport 
vehicles). It is also the case when we want to design election procedures and ways 
to account for their results (such as distribution of seats in a parliament based on the 
voting outcomes) or when we want to define and introduce measures or concepts 
in practical or scientific contexts (e.g., speed and acceleration, density, kWh, pH, 
body mass indices, elasticity of variables in the economy, etc.). There is a plethora of 
examples of this kind of design problems.

In all such cases, mathematics is involved in providing prescriptions that help 
create or organise reality by structuring, changing or interfering with it. We fol-
low Davis (1991) and Niss (2015) in using the term prescriptive modelling for such 
endeavours while observing that this type of modelling is sometimes also referred 
to as normative modelling.

The question arises whether the modelling cycle for descriptive modelling 
presented above also works in relation to prescriptive modelling. In prescriptive 
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modelling, too, we take our point of departure in some extra-mathematical domain. 
The generating questions, however, are typically of a somewhat different nature 
from those in descriptive modelling as they focus on measures, decisions or actions 
that should or could be undertaken in order to create or organise the reality of 
the extra-mathematical domain that interests us. It is normally also necessary to 
undertake pre-mathematisation leading to a reduced situation accompanied by a 
specification of the design or decision questions we want to pose. Examples include: 
How can we introduce a relevant measure of “heaviness” for individuals? Where 
should the next general hospital in a given region be located? How can we design 
a container of milk which on the one hand fulfils certain requirements concerning 
its dimensions and on the other hand makes use of a minimum amount of material? 
What would be an appropriate measure of income inequality in a country? What 
should the life insurances premiums be for different out-payments in a certain sub-
population of a country? And so on and so forth.

As is the case with descriptive modelling, the reduced situation cum questions 
must be mathematised into a mathematical situation cum questions belonging to 
some mathematical domain. Sometimes, the mathematised questions closely resem-
ble those in descriptive modelling, and hence the same is true of the mathematical 
treatment. For instance, this is typically the case with optimisation questions and 
questions involving geometric design (e.g., the paper format design question (see 
example 4 in Chapter 3): We are to design a sequence of rectangular paper formats 
such that each sheet is produced by folding the previous sheet along a mid-point 
transversal and such that the ratio between the longer and shorter sides of any sheet 
is the same for all sheets, while requiring the largest sheet to have an area of 1m2).

However, in other situations, the mathematised question is trivial or very simple, 
thus requiring no or very little treatment. For example, this is the case if we have 
decided to measure the age profile of the inhabitants of a country by indicating 
the average age and the standard deviation and then want to determine the values 
of these indicators at a given date or for a given country in a given year. When it 
comes to de-mathematisation in prescriptive modelling, this varies greatly with the 
circumstances. Sometimes, de-mathematisation simply consists in attaching units 
to a numerical result, like when the optimal dimensions of a container of a certain 
shape must be specified by attaching units to the numbers arrived at. At other times, 
de-mathematisation involves much more interpretation, e.g., when making sense 
of the value of the Gini coefficient of economic inequality (Gini, 1912) in a given 
country and comparing it with the value of the coefficient in other countries.

To a large extent, the modelling cycle for descriptive modelling can be used to 
also capture prescriptive modelling, even though sometimes only parts of the cycle 
will be in play. The most important difference between descriptive and predictive 
modelling, however, normally lies in the evaluation of the resulting models (Niss, 
2015). While it is possible in descriptive modelling to evaluate a model by validating 
its outputs, by assessing the structural properties of the model, by assessing its quan-
titative features and by comparing and contrasting it with other models representing 
the same context and situation, much of this may not be possible or may even not 
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make sense when evaluating a model constructed for the purpose of prescriptive 
modelling. Validation of the model outputs by confronting them with existing 
reality will often be meaningless because the reality doesn’t fully exist yet since the 
purpose of the modelling endeavour will typically be to design or structure reality. 
In a multitude of cases, it is simply not possible to evaluate a model constructed 
for prescriptive purposes by way of its outputs. Hence, it cannot be falsified. For 
example, one cannot validate BMI values and associated interval cut points by con-
frontation with reality. However, one or more of the other components of model 
evaluation – especially concerning its structural properties, quantitative features and 
comparison with other models – often are possible (Niss, 2015). Often, the con-
sequences of prescriptive modelling (e.g., the tax revenue of a state according to a 
certain taxation model, the seat distribution of a parliamentary election based on 
a certain apportionment model, or the feasibility in practical terms of a certain 
location of a fire station) are open for public discussion with reference to personal 
or societal norms or values, which is also an evaluation of a different nature to the 
evaluation of models built for descriptive purposes. However, the bottom line is that 
the outcomes of prescriptive modelling enterprises are evaluated in terms of “fitness 
for purpose”.

It is important to understand that descriptive and prescriptive modelling differ in 
the purposes pursued, not necessarily in the models produced. The very same model 
can occur as a result of descriptive as well as of prescriptive modelling, as is the case 
with the paper format and the amortisation of a loan situations (see examples 4 and 
5 in Chapter 3). This is the reason why we speak of descriptive and prescriptive 
modelling, respectively, not about descriptive or predictive models. Invoking an old 
distinction, we can say that the outcome of a descriptive modelling enterprise is a 
model of those aspects of the extra-mathematical domain that are captured by the 
model, whereas the outcome of a prescriptive modelling undertaking is a model for 
those aspects of the extra-mathematical world that have been created or shaped by 
the model and its implementation.

2.6 Cognitive aspects of modelling

So far, we have concentrated on presenting the basics of models and modelling in 
a general sense without having paid attention to cognition or education. However, 
for a person actually or potentially engaged in undertaking or learning modelling, 
there are, of course, several cognitive facets, and in some cases even barriers, at play 
in this endeavour. The presence of these facets depends on the overall setting for 
the modelling context and situation. First, it may happen that neither a context nor 
a situation is present from the beginning. If so, the person at issue only becomes 
a modeller once he or she has identified a context, situation and questions worth 
dealing with. In case a context and a situation are present from the beginning, how 
open is the situation? How much is given to the modeller at the outset, i.e., what are 
the boundary conditions for the undertaking? Is it up to the modeller her- or him-
self to pose the questions to be answered, to make assumptions about the situation, 
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to seek and select relevant information, data, etc. pertaining to the situation, or is 
this already in place from the outset?

At any rate, the modeller first must make sense of and comprehend the extra-
mathematical context and situation under consideration. This requires the modeller 
to construct a mental image of the situation and of the issues and questions to be 
considered, to form a view of the factors and components that are significant to 
the enterprise and the ones that aren’t, and to mobilise whatever knowledge he or 
she possesses about the extra-mathematical domain pertaining to the situation. This 
part of the pre-mathematisation process, a clear mental image of the situation, is an 
indispensable first step in the modelling process. In other words, the modeller has 
to form a situation model (cf. Leiss et al., 2010, for a description of the origins and 
features of this construct). On this basis, the modeller moves on to specify the ques-
tions to which answers are being sought, to identify relevant variables, and to make 
appropriate assumptions about the situation and its elements in order to arrive at a 
reduced situation cum questions, possibly in the form of a real model (Blum, 1985). 
This part of the pre-mathematisation process involves the first instance of what 
is called implemented anticipation (Niss, 2010; Stillman & Brown, 2012, 2014; Niss, 
2017; Czocher, 2018). This means that for the modeller to be able to make all the 
decisions and choices needed for preparing the situation for subsequent mathemati-
sation, he or she must imagine which elements and relationships among them may, 
potentially, lend themselves to some form of mathematisation. In other words, the 
modeller must project her- or himself into a situation which doesn’t quite exist yet 
as it awaits decisions, conclusions and steps further down the road. We will return 
to this notion in sections 2.8 and 6.2.

Once the reduced situation cum questions have been obtained, the modeller 
moves on to undertake perhaps the most crucial part of the entire modelling 
process: mathematisation. In this step, the modeller will have to decide which math-
ematical domain M and which objects and mathematical relationships would be 
suitable representatives of the extra-mathematical objects, features and relationships 
selected for inclusion in the reduced situation. The modeller will further have to 
specify the mathematical questions that would correspond to the extra-mathematical 
questions posed in D. All this involves the second and most significant instance of 
implemented anticipation by the modeller, who must project her- or himself into 
yet another situation which doesn’t really exist yet. Already at this stage, the modeller 
will have to anticipate not only what mathematics might be suitable and available 
for capturing the essentials of the extra-mathematical situation but also how to use 
this mathematics to obtain conclusions that might eventually generate answers to the 
extra-mathematical questions that gave rise to the whole enterprise. This anticipa-
tion is strongly dependent on the range, nature and accessibility of the mathematical 
resources in the modeller’s possession – not only those resources taken in a pure 
mathematical form but also their role in the modeller’s previous experiences with 
models and modelling. A key issue here is that the mathematical resources a modeller 
can activate in a modelling situation must be thoroughly absorbed and connected in 
her or his mind. It is difficult – albeit not entirely impossible – to bring mathematical 
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concepts, theories and methods that do not (yet) belong to one’s resources to bear 
on the mathematisation step before this has been taken. In other words, we are faced 
with a bit of a paradox: “In order to undertake mathematisation, you already have 
to be able to undertake mathematisation!”

In a paper by Treilibs et al. (1980), they considered what they called model 
formulation consisting of (quoted from Burkhardt, 2018, p. 63; our italics):

[G]enerating variables – the ability to generate the variables or factors that 
might be pertinent to the problem situation; selecting variables – the ability 
to distinguish the relative importance of variables in the building of a good 
model; specifying questions – the ability to identify the specific questions cru-
cial to the, typically ill-defined realistic problem; generating relationships – the 
ability to identify relationships between the variables inherent in the problem 
situation; selecting relationships – the ability to distinguish the applicability of 
possible relationships to the problem situation.

It is interesting to notice that this a specification of what it takes for someone to be 
able to carry out an amalgamation of the pre-mathematisation and mathematisation 
phases of the modelling process.

The mathematisation step is complete when the mathematical objects, properties, 
relationships and questions meant to represent the (possibly reduced) extra-math-
ematical situation cum questions have been selected. Then the modeller will seek 
answers to the mathematical questions that have arisen during the mathematisation 
step. This means that the modeller will have to engage in mathematical treatment of 
the relevant entities in M, especially in mathematical problem solving. As the math-
ematical problems corresponding to the questions posed may be wildly varying 
in complexity and technical sophistication, ranging from trivial, routine problems 
to deep and challenging problems that nobody has solved before, it goes without 
saying that there is a similar range of variation in the cognitive demands on the 
modeller when it comes to mathematical treatment. The literature on mathematical 
problem solving has dealt with these demands for three quarters of a century. This 
is not the place to outline, let alone detail, the nature of these demands. Suffice it 
to mention that the demands concern at least the following spectrum of components 
(Schoenfeld, 1992): the knowledge base, problem solving strategies, monitoring and 
control, beliefs and affects, and practices. Here, the ability to devise and implement 
a problem-solving strategy seems to be the core component, the elements of which 
are: familiarising oneself with the original problem situation, analysing it, exploring 
possible solution paths, settling on a plan, implementing the plan and verifying the 
outcomes. Here we encounter the third instance of implemented anticipation that the 
modeller needs to produce. When faced with a well-defined non-trivial mathemati-
cal problem, the problem solver has to imagine, prior to the fact, possible approaches 
to attack the problem while anticipating the ways in which a given approach might 
eventually be conducive to obtaining a well-justified full or partial solution to the 
problem and, hence, answers to the mathematical questions posed within M.
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Once the modeller has obtained mathematical answers to the mathematical ques-
tions resulting from the mathematisation step, the modeller must de-mathematise 
the answers, i.e., translate them back and interpret them in terms of answers to the 
extra-mathematical questions pertaining to the reduced situation. Sometimes de-
mathematising the mathematical answers is straightforward and simple; sometimes 
it is not simple at all, typically if substantial interpretation is required to make 
sense of the outcomes within the extra-mathematical domain. Take, for example, a 
probabilistic weather forecasting model that concludes that the probability of rain 
in the capital tomorrow afternoon is 60%. How can that statement be interpreted 
in real-life terms, and what consequences should it have for the family’s picnic 
plans? Will it rain everywhere 60% of the time? Is the probability of it raining at a 
specific point in the capital 60%?

Having de-mathematised the mathematical outcomes, the modeller will need to 
validate the answers obtained vis-à-vis the extra-mathematical questions that gave 
rise to the modelling enterprise in the first place, as described in section 2.2. In case 
the answers are discarded as unsatisfactory, the modeller is faced with the necessity 
of improving the model by way of some form of modification or amendment or 
by building an entirely new model by taking a different approach. In either case, 
the validation of the answers lead to a negative evaluation of the model itself. As 
outlined in section 2.2, there are other ways to evaluate a model than by validating 
the answers. If the evaluation of the model leads to it being discarded, the modeller is 
faced with the challenge of coming up with a new model. Taking this path gives rise 
to a fourth – and strong – instance of implemented anticipation because the mod-
eller has to imagine how this might be done in a manner that avoids the problems 
responsible for the failure of the first model and to anticipate and implement the ideas 
thus generated. The Blum-Leiss version of the modelling cycle shown in Figure 2.8 
illustrates, in an ideal-typical way, these steps from a cognitive point of view.

Once again, it cannot be stressed enough that this depiction of the cognitive pro-
cesses involved in performing modelling is an analytic reconstruction of what must 
happen in principle. It is not at all a description of the path a concrete modeller will 
necessarily take in actual practice.

2.7  Modelling in mathematics education – a brief  
historical sketch

Thus far, we have been dealing with the theoretical and cognitive aspects of math-
ematical modelling, whereas nothing has been said about mathematical modelling 
in the context of mathematics education. The time has now come to address this 
topic, with an emphasis on the actual or potential place and role of modelling in 
mathematics curricula, teaching and learning as well as in mathematics education 
research.

We know that already ancient Egypt and Mesopotamia, for educational reasons, 
took an interest in what we usually call word problems, i.e., problems in which 
some questions are asked as part of a short, verbally formulated narrative about a 
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more or less idealised real-world situation, accompanied by a few pieces of quantita-
tive information. The questions typically require activation of arithmetic, algebraic 
or algebraic-geometric solving processes. As an example, consider problem 72 of 
the Egyptian Ahmes papyrus, dated between 2000 and 1800 BC: “How many 
loaves of strength 45 are equivalent to 100 loaves of strength 10?” where strength 
of a loaf is the reciprocal of grain density. Word problems later became popular in 
medieval China, India, in the Muslim world and in Europe. As proposed by Ver-
schaffel et al. (2000), it may be natural to consider word problems as a special type 
of modelling tasks – a rather stylised one – even if the modelling terminology was 
not used before the last decades of the 20th century. If we accept word problems 
as a special form of modelling tasks – but many protagonists in the didactics of 
mathematical modelling do not – mathematics education has always had some kind 
of modelling on the agenda of teaching. More will be said about word problems 
in section 2.9.

Traditionally, however, the term “modelling” has been reserved for much less 
stylised situations in which the properties, features and attributes of the extra-
mathematical contexts and situations at issue play a significant role in the modelling 
enterprise, in contradistinction to what is typically the case with word problems. A 
key figure in pleading for the serious inclusion of all aspects of the mathematical 
modelling process in mathematics education, Henry Pollak, who is an early pro-
tagonist in mathematical applications, models and modelling (Pollak, 1968, 1969, 
1979), has investigated (Pollak, 2003) the roots of mathematical modelling (or the 
equivalent notion of model building) – not only of mathematical models – in 
mathematics teaching and learning. Modelling was introduced in the USA at both 
college and school levels in the mid-1960s by the Committee on the Undergradu-
ate Program in Mathematics (1966) in A Curriculum in Applied Mathematics: Report 
of Ad Hoc Committee on Applied Mathematics and by the School Mathematics Study 
Group (SMSG) Committee on Mathematical Models (1966) in Report of the Model-
ing Committee, respectively (see also Burkhardt & Pollak, 2006).

The 1970s saw an upsurge of mathematical modelling in experimental teaching 
programmes, primarily at the tertiary level, in different parts of the world, includ-
ing Australia, Denmark, Germany, the Netherlands and the UK, many of which 
were presented in reports and journal papers. At the Third International Con-
gress on Mathematical Education (ICME 3), held in Karlsruhe, Germany, in 1976, 
Henry Pollak was in charge of the section on the relationship between mathematics 
and other school subjects in which the importance of mathematical modelling was 
explicitly stressed (Pollak, 1979). From then on, all the ICMEs contained significant 
programme elements focusing on mathematical applications and modelling. In the 
UK, the Shell Centre for Mathematical Education was established at Nottingham 
University in 1967; when Hugh Burkhardt became its director in 1976, a focus on 
mathematical modelling was adopted and developed further (for more details, see 
Burkhardt, 2018; for materials, see section 5.6).

In the USA, a non-profit organisation, Consortium for Mathematics and Its 
Applications (COMAP, www.comap.com), was set up by Solomon Garfunkel in 

http://www.comap.com
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1980 to further mathematical modelling in mathematics education. Since then, 
COMAP has been instrumental in designing and disseminating a variety of cur-
riculum and teaching materials for schools and colleges in the US (see sections 5.6 
and 7.4).

Mathematical modelling gradually obtained an increasingly strong position 
within the growing international community, cultivating an interest in mathemati-
cal applications and modelling. This community established a series of International 
Conferences on the Teaching of Mathematical Modelling and Applications (the 
ICTMAs), the first of which was held in Exeter, UK, in 1983. The most recent 
one, ICTMA 19, was held in Hong Kong in 2019. In 1999, the community around 
the conferences decided to develop an organisational framework for its activities, 
choosing the name The International Community of Teachers of Mathemati-
cal Modelling and Applications, generating also the acronym ICTMA. In 2003, 
ICTMA was accepted as an Affiliated Study Group of the International Commis-
sion on Mathematical Instruction (ICMI).

In the first wave of work on mathematical applications and modelling, which 
we might roughly date to the years 1970–1995 (also see the survey by Blum & 
Niss, 1991; Niss, 2018), the primary foci were: (1) making a plea and giving argu-
ments for the inclusion of these components in mathematics teaching and learning 
at all levels, while also analysing, on theoretical grounds, how this may take place, 
as well as establishing a terminology for dealing with applications and modelling 
issues; (2) presenting applications and modelling cases reporting on how people had 
implemented applications and modelling activities in actual curricula and in actual 
teaching to provide an existence proof of the viability of these ideas in real life; and 
(3) collecting and publishing applications and modelling examples, which interested 
school or college teachers might either use directly or take inspiration from in their 
own teaching. One might describe this first wave as one in which the theoretical 
foundation thus laid for applications and modelling constituted the (theoretical) 
research part of the work, while the practical, experimental and empirical activities 
gave flesh and blood to the theoretical consideration without, at that time, involving 
empirical research proper to a substantive extent.

The second wave – by and large from 1995 onwards – is characterised (Niss, 
2018) by three features: (4) modelling became the predominant focus point, whereas 
applications not directly involving the modelling process lost significance; (5) the 
very process and sub-processes of modelling as well as the corresponding model-
ling competencies (see Chapter 4) attracted substantive attention, as did the barriers 
encountered by students when undertaking modelling activities (see Chapters 5 
and 6); and (6) empirical research on the teaching and learning of modelling gained 
massive prominence among those working in the field and that this research was 
acknowledged also by the mathematics education community at large. We can 
say that now, in 2019–2020, we are still in this phase. While ICMI Study 14 on 
Modelling and Applications in Mathematics Education (Blum et al., 2007) gave a 
summary of the state of the art in the field until the beginning of our century, we 
will, in this book, also take stock of more recent achievements and developments.
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2.8  Mathematical modelling in mathematics teaching 
and learning – why, what and how

There are basically two different overarching reasons for including mathematical 
modelling as a significant component of mathematics teaching and learning at all 
education levels.

The first reason is to do with the fact that mathematics plays an immensely 
important role in understanding and dealing with the world around us. As this role 
is brought about by way of mathematical modelling, enabling people to put the 
mathematics they have learnt and understood to use in extra-mathematical contexts 
and situations – i.e., undertaking mathematical modelling – should be a goal in and 
of itself of mathematics education. In that way, mathematics ought to help students 
to come to grips with the world in which we live and to better master real-world 
situations stemming from everyday life as well as from other school subjects or from 
their future professions or fields of study. It should also be a goal to educate students 
to see and understand the use and misuse of mathematics in society. All this requires 
the development of a general mathematical modelling competency (see chapter 4). 
In simplistic terms, we might label this reason mathematics for the sake of modelling, 
even though modelling is usually not the only goal of mathematics education.

The second reason is to employ modelling as a means for something else, above 
all for supporting the learning of mathematics, by offering motivation for its study 
as well as interpretation, meaning, proper understanding and sustainable retention of 
its concepts, results, methods and theories and at the same time furthering significant 
mathematical competencies such as problem solving and reasoning (see section 4.5). In 
that way, modelling also contributes to generating an adequate and balanced image 
of mathematics as a discipline, from both historical and contemporary perspectives. 
Again, in simplistic terms we might label this reason modelling for the sake of math-
ematics (learning and appreciation).

These two reasons are in no way contradictory to one another – both can be 
pursued in the same actualisation of teaching and learning of mathematics. They 
are, however, analytically distinct, and they do give rise to different consequences 
in terms of priorities and activities in the design and orchestration of mathematics 
teaching.

If the former reason is being invoked, according to which it is an obligation and 
a goal for mathematics teaching and learning that students become able to under-
take descriptive and prescriptive mathematical modelling in a variety of contexts 
and settings, the full modelling cycle, in one version or another, whether explicit or 
implicit, is necessarily placed on the agenda of mathematics education. This implies, 
among other things, that numerous aspects of the extra-mathematical domains 
under consideration must be considered as part of the modelling process. It is not 
sufficient to concentrate on the intra-mathematical elements of the models, includ-
ing the pure mathematical problem solving involved in dealing with them. In other 
words, students will have to be engaged in working on the entire modelling cycle. 
As Blomhøj and Jensen (2003) have pointed out, this can take place in two different 
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ways: holistically or atomistically. In the holistic approach, students are working on 
modelling tasks in a manner that involves all the components of the modelling cycle 
at the same time. In the atomistic approach, students are working on modelling tasks 
in a way that zooms in on only one or a few such components at a time, typically 
different components in different tasks. In Chapters 5 and 6, the didactic implica-
tions of these approaches are discussed.

In case the latter reason is being invoked, according to which the primary role 
of modelling is to support the teaching and learning of mathematics as a discipline, 
the choice of extra-mathematical domains to be subjected to modelling is subsumed 
under the main purpose of providing motivation, illustration, interpretation and 
meaning to the mathematical entities and processes placed on the agenda of the 
teaching in the given context. Similarly, the role assigned to the modelling cycle and 
its different components in the context is determined by the needs that are supposed 
to be served by involving modelling in the teaching and learning of mathematics. 
For motivational and other learning purposes, it might even be legitimate to use 
dressed-up so-called “word problems” (see section 2.9) where modelling essentially 
consists in undressing the problem so as to make the mathematical core visible 
and, once a solution to the mathematical problem has been obtained, to interpret 
it within the situation given. However, for developing an adequate and balanced 
image of mathematics, it is essential to also, from time to time, address authentic 
modelling problems by running through the whole modelling cycle.

One such way of placing modelling in the service of the teaching and learning 
of mathematics involves what Lesh and Doerr (2003) call model-eliciting activities 
(MEAs). In such activities, students are placed in extra-mathematical situations 
in which they are to capture essential features of the situation by (re-)invent-
ing mathematical concepts such as ratio, rate of change, slope, scaling, average, 
standard deviation and so on so as to underpin the formation of these math-
ematical concepts (also see section 6.9). This is similar to Freudenthal’s idea of 
guided re-invention (Freudenthal, 1991). A related notion is that of emergent modelling 
introduced by Gravemeijer (2007). By attempting to come to grips with a given 
extra-mathematical situation by inventing or using mathematical descriptions of 
it – i.e., a model of the situation – students gradually accumulate a repertoire of 
such descriptions which eventually can be structured and directly employed to 
dealing with similar new situations so that students now possess a model for a large 
class of such situations. The latter aspect can also serve the purpose of building 
a capacity in students for undertaking implemented anticipation with particular 
regard to mathematisation.

The various aims pursued by way of mathematical modelling activities have 
given rise to the distinction between various perspectives of modelling, as Kaiser 
et al. (2006) have called it. According to the purposes of modelling they speak 
of “applied”, “educational”, “socio-critical”, “epistemological”, “pedagogical” or 
“conceptual” modelling. Blum (2015) suggests regarding perspectives as a triple, 
consisting of an aim for modelling, suitable modelling examples and a modelling cycle 
suitable for visualisation of the aims. He also distinguishes (pp. 82–83) between 
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different aspects of sense-making via modelling, corresponding to the various per-
spectives. In a similar approach, Abassian et al. (2019) characterise five important 
perspectives by goals, model definition, modelling cycle and task design.

2.9 Word problems

Since word problems play a special and somewhat controversial part in the discus-
sion, research and practice of mathematical modelling, it is warranted to say a few 
words about this notion. The term “word problem” is widely used in mathematics, 
but clear definitions are scarce. Wikipedia offers the following definition:

In science education, a word problem is a mathematical exercise where sig-
nificant background information on the problem is presented as text rather 
than in mathematical notation. As word problems often involve a narrative 
of some sort, they are also referred to as story problems and may vary in the 
amount of language used.

(https://en.wikipedia.org/wiki/word_problem(mathematics_education),  
accessed 28 October 2019)

This definition focuses entirely on the use of words instead of mathematical nota-
tion. This would also make “Show that every metric space is a Hausdorff space” a 
word problem, even though this clearly does not fall under this category according 
to the common understanding of “word problem” in mathematics education. To 
capture that understanding, we propose the following definition:

A word problem poses – typically within an educational or recreational setting – a 
question concerning a real, idealised or imagined extra-mathematical context and 
situation, the answering of which requires some sort and degree of mathematical 
problem solving.

While the answer to a word problem is supposed to be unique, the mathemati-
cal treatment leading to this answer may – in principle, although not necessarily 
in practice – vary considerably. The problem, including its background informa-
tion, is presented by way of a few lines of text in ordinary language, supplemented 
by elementary numbers and units. The background information presented is both 
necessary and sufficient for the solution of the problem. The primary purpose of a 
word problem is not to understand the given context by means of mathematics but 
to present the underlying mathematical problem in an interesting and motivating 
wrapping.

Word problems differ in the significance of the extra-mathematical context 
and situation for the problem posed and for the solution process undertaken. At 
one end of the spectrum, the extra-mathematical context has no real significance 
because its role is to dress up – disguise – an intra-mathematical problem that 
constitutes the kernel of the task (Pollak, 1979, calls such problems “whimsical”). 
Accordingly, the solution consists of undressing the problem to reveal its intra-
mathematical structure and substance and then solving it. At the other end of the 

https://en.wikipedia.org
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spectrum, the extra-mathematical context and situation are indeed significant and 
cannot be discarded, but the problem solver is not supposed to find any informa-
tion or data him- or herself or make any additional assumptions, idealisations or 
simplifications beyond those stated in the problem description. In other words, no 
pre-mathematisation needs to be undertaken prior to the mathematisation, which is 
typically stylised and uniquely determined. Similarly, answer validation and model 
evaluation only concern the relevance and correctness of the mathematisation and 
the mathematical treatment performed. Furthermore, word problems differ with 
respect to the realism of the extra-mathematical context. Is the context embedded 
in a real domain; is the problem authentic, or does it refer to some highly idealised 
or fictitious domain, with correspondingly idealised or fictitious questions?

Word problems of the latter category have been widely ridiculed in various 
kinds of literature. The most famous example is found in a letter which the French 
writer Gustave Flaubert wrote to his sister Caroline in 1841, who was studying 
trigonometry at the time (Flaubert, 1887):

A ship sails the ocean. It left Boston with a cargo of wool. It grosses 200 tons. 
It is bound to Le Havre. The mainmast is broken, the cabin boy is on deck, 
there are 12 passengers aboard, the wind is blowing East-North-East, the 
clock points to a quarter past three in the afternoon. It is the month of May. 
How old is the captain?

This, of course, is an extreme example, but less extreme examples abound. This may 
be one of the reasons why research has shown that many students tend to treat most 
word problems as if they are dressed-up problems and rush off to manipulate the 
numbers given in the problem statement by mathematical means, while entirely 
suspending any kind of sense-making related to the extra-mathematical context and 
situation (Verschaffel et al., 2000; Verschaffel et al., 2010; Jankvist & Niss, 2019. See 
section 5.2 for more details).

As one means of “suspending the suspension of sense-making”, various research-
ers, especially Greer (1993, 1997), Greer et al. (2007), Verschaffel et al. (2010) and 
Verschaffel et al. (2000), have made a plea for perceiving word problems as a certain, 
albeit restricted, kind of modelling problems. In contrast to many other researchers 
in the area of the didactics of mathematical modelling, we endorse this perspec-
tive but nevertheless maintain the necessity of distinguishing clearly between word 
problems and full-fledged modelling problems. The processes involved in solv-
ing word problems are: (1) reading and understanding the problem presentation; 
(2) identifying the mathematical problem embedded in the problem presentation; 
(3) solving the mathematical problem, primarily by performing the mathematical 
operations entailed by the problem; and (4) presenting the solution and writing and 
justifying the answer. In contrast, a full-fledged modelling process involves all the 
phases of the modelling cycle, including pre-mathematisation with its multitude of 
aspects, mathematisation, mathematical treatment, de-mathematisation, validation of 
model outcomes and evaluation of the entire model.
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Notes

1 The word “mapping” is in inverted commas because f is usually not a mapping in a strict 
mathematical sense since it is not the case that every single object in D is mapped onto one 
(and only one) object in M. In other words, “mapping” is used as an analogy.

2 As is commonplace in mathematics education, we have chosen to use the term “linear” 
for such functions, even though they are not really linear but affine in the sense of linear 
algebra.
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Introduction

In order to provide flesh and blood to the general and somewhat abstract presenta-
tion and discussion of models and modelling offered in Chapter 2, this chapter is 
devoted to a detailed exposition of a collection of modelling examples, all of which 
are both accessible at a mathematical level within the range of secondary school 
curricula in most parts of the world and manageable insofar as they can be discussed 
together with students within one or a few lessons. The examples in this chapter 
cover a range of real-world situations and mathematical content, as well as all edu-
cational levels from primary to upper secondary school. The following examples are 
ordered according to their cognitive and technical complexity.

Example 1: Uwe Seeler’s foot

The problem situation

Uwe Seeler (born in 1936) is a famous German soccer player. He played 72 times 
internationally and participated in 4 world championships. In 2005, the city of 
Hamburg, where Seeler was born and where he played during his whole carrier, in 
his honour erected a big, bronze sculpture in front of the soccer stadium, showing his 
right foot (see Figure 3.1, taken from Vorhölter et al., 2019). The sculpture is, accord-
ing to the city of Hamburg (see www.kulturkarte.de/hamburg/16015unsuwe), 
5.15 m long, 2.30 m wide and 5.30 m high.

How big would a full statue of Uwe Seeler be if this sculpture was to be his right 
foot? In reality, Seeler’s height is 1.68 m, and his (European) shoe size is 42.

3
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Solving the problem

The first approach: A shoe size of 42 means approximately a 26.5-cm foot length. 
Since the sculpture is 5.15 m long, it is approximately 19.5 times as long as his real foot. 
Therefore, the scale is approximately 19.5:1, and hence a statue of Uwe Seeler with 
this sculpture as his foot would be gigantic, namely about 19.5 · 1.68 m ≈ 32.8 m tall.

The second approach: For Uwe Seeler, the ratio of his height and his shoe size is 4. 
This is actually the average for men in general. The European shoe size is approxi-
mately 1.5 times the shoe length, so the height of a man is approximately 6 times 
his shoe length. The shoe length is roughly 5% larger than the foot length; hence a 
foot length of 5.15 m would mean a shoe length of approximately 5.41 m. There-
fore, the giant Uwe Seeler statue would be approximately 6 · 5.41 m ≈ 32.5 m tall.

Validating the solutions

How precise are our results? In the first approach, we used the information that a 
size 42 shoe means a foot length of 26.5 cm. This is a rough measure, and we do 
not know Seeler’s actual foot length. If we are more cautious, we can say that Seeler’s 
foot length will most likely be between 26 cm and 27 cm. The measures of the 
statue are all rounded to the nearest 5 cm, so the actual length will be between 5.125 
m and 5.175 m. This means that the scaling factor will be between 5.175:26 ≈ 19.9 
and 5.125:27 ≈ 18.9. Uwe Seeler’s height is rounded to the nearest cm. Therefore, 

FIGURE 3.1 The Uwe Seeler foot statue (made by the artist Brigitte Schmittges) in 
Hamburg



Modelling examples 37

the resulting height of the giant statue lies in the interval between 18.9 · 1.675 m 
≈ 31.6 m and 19.9 · 1.685 m ≈ 33.5 m. Similar considerations apply to the second 
approach. A reasonable answer will be: A full statue of Uwe Seeler using the given 
ratio of his foot would be approximately between 31.5 m and 33.5 m tall – or more 
cautiously between 31 m and 34 m.

On the internet, we can find the information that the artist wanted to create a 
sculpture with a scale of 20:1. That would mean the full Seeler statue would be 20 
times Seeler’s real height, that is, 33.6 m. However, this result is probably not precise 
because both the scaling factor of 20 and Seeler’s height are approximate. Taking 
into account that Seeler was nearly 70 when the sculpture was made, his actual 
height is likely to have decreased a bit (people become shorter with age after 50), 
so his giant statue would have been shorter than if made at the time when he was 
an active soccer player.

Concluding remarks

This example shows how simple scaling can be used in elementary modelling and that 
scaling with different points of departure can be used to validate the model outcomes 
and eventually to evaluate the underlying model. It further shows how uncertainties 
in the initial measurements give rise to uncertainty estimates of the final results. When 
modelling, one of the principles of numerical analysis is important to keep in mind: 
The final result can never be more precise than the data used in the solution approach, 
and all uncertainties in the data increase the uncertainty of the result.
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Example 2: Filling up

The problem and a first solution

We imagine the following situation: Someone, we call her Mrs. Stein, must fill up 
her car. Where should she do that? We reduce the complexity of this situation by 
taking only two petrol stations into account. Mrs. Stein knows that the petrol in a 
station some distance away is much cheaper than in the station around the corner. 
Is it worthwhile to drive to the distant station? This is a kind of problem situation 
that can be encountered in other contexts as well – for instance, if someone has to 
decide whether it is worthwhile to drive to a supermarket outside of town because 
some goods are cheaper there than in the nearby market. We are going to analyse 
the filling up problem in considerable detail (see Blum & Leiß, 2005 for an early 
version of this problem, based on an authentic case).
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Assume that Mrs. Stein lives in Trier (Germany) where the petrol in the nearby 
station costs 1.35 € per litre. The petrol in the station just behind the border of Luxem-
bourg, 17 km from where Mrs. Stein lives, costs only 1.18 € per litre (see Figure 3.2).

What we must know to be able to compare the prices for filling up in Trier or 
in Luxembourg are two parameters from Mrs. Stein’s car: the consumption rate and 
the tank volume. Assume that the car consumes 0.07 litres per km on such a trip. 
The drive to the station in Luxembourg (34 km for both ways) costs:

34 km · (0.07 l/km) · 1.18 €/l ≈ 2.80 €,

supposing the petrol in the tank was already from that station (otherwise, we would 
have to calculate the costs for driving there and back separately, and the drive would cost  
17 · 0.07 · 0.17 € ≈ 0.20 € more). If we assume a tank volume of 45 litres and that Mrs. 
Stein arrives at the station with a nearly empty tank (creating a certain risk, especially 
when driving through the forest to Luxembourg), then filling up in Trier costs:

45 l · 1.35 €/l = 60.75 €

(if the station is just around the corner, or if Mrs. Stein passes by the station anyway), 
whereas filling up in Luxembourg costs:

45 l · 1.18 €/l = 53.10 €,

implying that the total cost for filling up in Luxembourg is:

53.10 € + 2.80 € = 55.90 €.

This is 4.85 € cheaper than filling up in Trier, so the answer is: If money is the only 
issue, it is worthwhile to drive to Luxembourg.

FIGURE 3.2 Map of Mrs. Stein’s route
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An evaluation of the first solution and  
moving to a second solution

Let us look at the problem and its solution a bit more carefully. Filling up in Luxem-
bourg not only costs money for driving forth and back; in addition, the tank after 
the trip contains only 45 l minus the volume consumed on the 17 km return trip, 
which is 17 km · (0.07 l/km) = 1.19 l. Moreover, these 1.19 l had to be in the tank, 
as a minimum, before driving to Luxembourg. So a direct comparison with filling 
up in Trier must take into account that after the trip only 45 l – 2.38 l = 42.62 l 
more petrol is in the tank than before the trip. The corresponding cost for filling 
up this volume in Trier is only:

42.62 l · 1.35 €/l = 57.54 €.

This must be compared with the cost of filling up in Luxembourg, that is, 53.10 €. 
This is still cheaper than in Trier, but a fair comparison means that, per trip, only 
4.44 € are saved. This becomes even clearer if, for a moment, we compare two cars 
with the same tank volume, 45 l, and the same consumption rate, 0.07 l/km, both 
in Trier with 1.19 l in the tank, the first one driving to Luxembourg to fill up and 
the second one driving around the corner to put only 42.62 l into the tank. In 
the end, both tanks contain 43.81 l, and the first driver has paid 53.10 € and the 
second 57.54 €.

We now check the recommendation in the solution of the filling up problem on 
a more fundamental basis. As mentioned, we have interpreted: “Is it worthwhile?” 
as “Do I save money?” However, is it appropriate to consider only the money issue? 
It takes time to drive to Luxembourg and back, perhaps a lot of time if there is a 
traffic jam on the road. Who is Mrs. Stein, and can she afford spending that time 
when she must fill up her car? If she can, how much could she have earned per 
hour for the time she spends? Furthermore, there is always a risk, albeit probably 
a small one, of having an accident on the trip, and there is additional air pollution 
caused by this trip which Mrs. Stein might wish to avoid. In addition, each car loses 
value with growing mileage, so we should include several more parameters in our 
calculations, not only the costs of filling up and of driving. Dependent on which 
aspects we choose to consider, the decision whether to drive to Luxembourg or not 
might turn out differently.

Now, we take one more parameter into account: the time that Mrs. Stein spends 
on her trip to the station in Luxembourg, thus aiming at a second solution. If the 
conditions (traffic density, weather) are normal on the trip to Luxembourg and 
Mrs. Stein lives not too far from the road to Luxembourg, we can assume an aver-
age speed of 70 km/h. This means that the trip altogether takes 34 km/(70 km/h) 
≈ 0.5 h, that is, about 30 minutes. If Mrs. Stein’s time is worth the German mini-
mum wage of roughly 9 € per hour, this trip costs 4.50 € in terms of lost income, 
which is almost exactly the same amount of money she saves by undertaking the 
trip. If her wages are higher, then she actually invests more into this trip than the 
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costs she saves. However, Mrs. Stein might like driving and might find the trip to 
Luxembourg a recreation from work, or she might have friends in Luxembourg 
that she can visit on the trip. Therefore, we cannot find an appropriate solution 
without knowing more about Mrs. Stein – a typical situation when real life meets 
mathematics.

When it comes to validating the model answers, it is interesting to observe that 
this cannot be done solely on empirical grounds. While it is possible to check the 
distance between Trier and the station in Luxemburg, the petrol prices in both 
places, as well as the capacity of the tank in Mrs Stein’s car, the modelling conclu-
sion concerning the cost saving obtained depends on some calculations involving 
the consumption rate. These require data on the distances actually travelled and 
the amounts of fuel actually consumed during the different sections of the trip. So, 
only post hoc checking of the model answers is possible. As to an evaluation of the 
model, some aspects have already been touched upon above. For instance, several 
significant factors for assessing the worthwhileness of the trip have deliberately been 
left out of consideration in the model described. These factors include time spent 
on the journey, potential loss of income resulting from spending time on driving 
rather than on earning an extra income, environmental considerations, etc. If factors 
other than cost savings are of importance, this model is not fully inadequate. Even 
with cost as the only focus, however, the model doesn’t account for fuel consump-
tion while waiting in a queue or at traffic lights. Moreover, the crucial parameters 
in the model are specified without paying attention to uncertainties. How would 
uncertainties in the specification of distance, tank volume, and fuel consumption 
influence the model outcome? Some of these issues are addressed in the generalised 
situations considered below.

A generalised solution

We now generalise the problem and its first solution by not only considering Mrs. 
Stein’s car but any car in Trier with tank volume V and consumption rate C. Again, 
we take only the costs for filling up and for driving into account; no other variables 
such as time are considered, and we still assume that the station in Trier is just round 
the corner. Then the price for filling up in Trier is V · 1.35 €/l and for filling up in 
Luxembourg (if the whole trip is made with “Luxembourg petrol”):

V · 1.18 €/l + 34 km · C · 1.18 €/l = (V + 34 km · C) · 1.18 €/l.

It is cheaper in Luxembourg if and only if:

(V + 34 km · C) · 1.18 €/l < V · 1.35 €/l,

or equivalently (rearranging this inequality and rounding off ) 34 km · C < 0.144 · V
or (rounding off again) C km < 0.0042 · V or in summary C/V km < 0.0042.
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For Mrs. Stein’s car, we have C = 0.07 l/km and V = 45 l, hence C/V km ≈ 
0.0016, so we see again that it is worthwhile driving to Luxembourg in terms of 
money. How high can the consumption rate be so that it is still worth going if the 
tank volume is 45 l? The condition is:

(C/45 l) km < 0.0042, that is (rounded off  ) C < 0.19 l/km.

If the consumption rate is less than 0.19 l/km (which for normal cars is certainly 
fulfilled), then the trip is worthwhile. On the other hand: How small can the tank 
volume be so that it is still worth driving to Luxembourg, provided that the con-
sumption rate is 0.07 l/km? The condition is:

(0.07 l/km)/V km < 0.0042, that is (rounded off ) V > 17 l.

Normal cars certainly have a tank volume bigger than 17 l. We can, of course, vary 
both quantities, C and V, simultaneously. If, only for a moment, we omit all units 
and measure C in l/km and V in l, then the condition for equal costs in Trier and 
Luxembourg is simply C ≈ 0.0042 · V, a proportional relation.

Another generalised solution

We have just generalized Mrs. Stein’s car to any car while keeping all the other 
parameters unchanged. Another generalisation which is very natural is to vary the 
unit prices per litre for petrol. Let P1 be the price in Trier and P2 be the price in 
Luxembourg. To have only two variables to consider, we again take Mrs. Stein’s car 
with a tank volume of 45 l and a consumption of 0.07 l/km. The cost (in Euros) of 
filling up in Trier is then 45 l · P1 and the cost in Luxembourg:

(45 l + 34 km · 0.07 l/km) · P2 = 47.38 l · P2 .

It is cheaper to go to Luxembourg if and only if:

47.38 l · P2 < 45 l · P1, or (rounded off) P2 < 0.95 · P1 or P2/P1 < 0.95.

In our example, we have P2/P1 ≈ 0.87. If the price in Trier is P1 = 1.35 €/l, then 
the price in Luxembourg must be less than (rounded off) 1.28 €/l for it to be worth 
driving there. If the price in Luxembourg is P2 = 1.18 €/l, then the price in Trier 
must be more than (rounded off) 1.24 €/l. This value could have been calculated in 
the beginning: Driving to Luxembourg costs 2.80 € and that must compensate for 
the higher petrol price in Trier, so the prices for filling up are equal exactly if the 
difference P of the petrol prices satisfies:

45 l · P = 2.80 €, thus P ≈ 0.06 €/l,
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which means a price of 1.24 €/l in Trier. If we vary both prices simultaneously, then 
the condition for equal prices in Trier and Luxembourg is P2 ≈ 0.95 · P1, again a 
proportional relation.

Yet another generalised solution

Finally, we can also vary the distances to the two stations (the distance to the nearby 
station was 0 km in all cases so far). If we assume again that the petrol in the tank 
is the same both ways, then only the distance between the stations is the relevant 
variable. Let D be that distance. To be specific, we include no more variables and 
take the data of Mrs. Stein’s car as well as the same petrol prices as in the beginning. 
Then the difference of the prices for filling up is:

45 l · 1.35 €/l – (45 l · 1.18 €/l + 2D · 0.07 l/km · 1.18 €/l) =  
7.65 € – D · 0.1652 €/km.

Leaving other factors out of consideration, it is worth driving to the distant station if and 
only if this difference in price is bigger than 0 €, which is equivalent to (rounded off  ):

D < 46 km.

A general mathematical model

Finally, we can set up an inequality where all relevant quantities are represented as 
variables. This can be interpreted as a general mathematical model of the given 
problem situation, again supposing we interpret “worthwhile” in terms of money 
only. If and only if the following inequality is true for given values of the variables, 
it is worth driving to the distant station:

V · P1 – (V + 2D · C) · P2 > 0.

This inequality has a rather simple structure; it is linear in every individual variable 
and allows all the specialisations that we have carried out so far. The border case is 
when equality holds, that is, when the costs of filling up are equal in both places:

V · P1 – (V + 2D · C) · P2 = 0.

We can now identify some variables that we deliberately consider as varying in this 
inequality respectively equation and others that we regard as parameters that are 
kept constant during such an analysis. For instance, if we regard P1 and P2 as vari-
ables and V, D and C as parameters, we get the functional dependence:

P2 = V · P1/(V + 2D · C),

which we looked at above for special values of V, D and C.



Modelling examples 43

The equation also allows for functional considerations without thinking of 
the real context: What happens with . . . if . . .? An easy example: What happens 
with De (that is, the distance for which the costs for filling up here or there are 
equal) if P1 increases (and all other variables are kept constant as parameters)? It 
is obvious (because of the “ – ”) that De increases as well. The interpretation in 
the real world is: If the price in the nearby station gets higher, then the accept-
able distance to the other station also gets higher – this is clear! What happens 
with De if P2 increases (and the rest remain unchanged)? It is equally obvious that 
De decreases. What happens with De if P2 increases by 5%? An increase by 5% 
means multiplication by 1.05, so the term V+2DeC is divided by 1.05 in order to 
maintain equality, which means V+2DeC decreases by circa 4.8%. The order of 
magnitude of V is somewhere in the range of 40 to 60 litres, C ranges between 5 
and 12 litres per 100 km, and reasonable distances for D are below 30 km. That 
means the part 2DeC in this term is at most 7 litres and thus significantly smaller 
compared to V. For the whole term V+2DeC to decrease by 4.8%, the smaller 
part 2DeC and thus De has to decrease by much more than that. With P1 = 
1.35 €/l, P2 = 1.23 €/l, V = 50 l, D = 25 km, C = 0.1 l/km we have approximate 
equality. If P2 increases by 5% to 1.29 €/l, then the new distance which brings 
equality is De ≈ 12 km, so the new acceptable distance is less than half of the 
former acceptable distance.

Concluding remarks

The purpose of the modelling carried out in this example was to pave the 
way for individuals, such as Mrs. Stein, to make decisions and take possible 
subsequent actions concerning the issue of whether or not it is worthwhile to 
drive to a distant petrol station to fill up the tank in one’s car, instead of going 
to a nearby station that charges a higher price per litre. On the face of it, this 
may resemble a prescriptive modelling purpose because it may help shape the 
reality of an individual car user. However, the outcome of the modelling activ-
ity does not give rise to the kind of lasting design or organisation of physical, 
socio- cultural or scientific reality that is characteristic of prescriptive model-
ling. Rather, it offers an analysis of factors and conditions involved in covering 
and capturing the filling-up context, which is the purpose of descriptive mod-
elling, in spite of the fact that the resulting model may actually be used as a tool 
for taking individual decisions or actions.

Example 3: Sight range

The problem: looking from a tower

Imagine we are standing on a tower, a high building or a mountain and want to 
know: How far can we see?

Let us take the Eiffel Tower in Paris as a concrete example (Figure 3.3).
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The upper part of the third platform, 279 m above ground, is accessible to visi-
tors. Imagine we are standing on that platform. The surroundings of the site are 
more or less flat, meaning that there are no mountains in the way to block our 
vision.

Let us assume clear visibility and that we can use a telescope if we like so that 
there is no visual restriction on our view. If we look into the sky, we can certainly 
look arbitrarily far. By the question “How far can we see?” we actually mean a 
slightly different question, namely “How far away is the horizon from where we 
stand?” where the “horizon” consists of all points on the surface of the earth that are 
at a maximum distance from us among all visible points. The horizon is (approxi-
mately) a circle (the word “horizon” is of Greek origin, and its original meaning 
was “limiting circle”). If we make a plane cut through the earth, through its centre, 
and look at the situation from far away in outer space, we see the earth idealised 
as a circle as well as two points of the horizon determined by our position. Let us 
take one of these points, represent the sight beam from our eyes to this point by a 
line segment and connect both the Eiffel Tower and the horizon point with the 
midpoint of the earth (see Figure 3.4).

Now we can mathematise the situation by means of a circle and a triangle, as in 
Figure 3.5.

By h we denote the height of the tower, including the height of an observer (so 
we have h ≈ 281 m), while s is the length of the sight beam (which is what we are 
seeking) and R is the radius of the earth (on average R ≈ 6,371 km). The triangle 
with side lengths R, s and R+h is right-angled since the sight beam lies on a tangent 

FIGURE 3.3 The Eiffel Tower in Paris
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FIGURE 3.4 Cross section through the earth with Eiffel Tower and horizon point

FIGURE 3.5 Mathematical model of the sight situation

line and tangents to a circle are perpendicular to its radius. We can use the Pythago-
rean theorem to obtain the following equation:

R2 + s2 = (R + h)2,
whence s2 = 2Rh + h2 or
s = √2Rh + h2.

By inserting quantities and rounding off to km, we get s ≈ 60 km. The interpreta-
tion of this result is that the farthest we can see from the third platform of the Eiffel 
Tower is approximately 60 km.
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Validation of the answer

How can we validate our answer? In principle, we could identify a certain object 
on the horizon and measure the distance from the tower to this object by means 
of appropriate instruments or by using GPS. We would find a non-negligible dif-
ference to our calculation – why? A less important reason is that the earth is not a 
complete sphere, so our model with a circle and the Pythagorean theorem is only 
approximately valid. The main reason, however, is the so-called refraction of the 
atmosphere. This means that light beams are not quite straight but slightly curved 
towards the surface of the earth, which then appears to be bigger than it is. In other 
words, one can see a little bit beyond the geometric horizon. The actual size of 
the refraction depends on temperature, humidity and air pressure. The so-called 
“apparent earth radius” due to refraction is on average R1 ≈ 7,680 km, so the real 
sight distance from the Eiffel Tower is s1 = √ 2R1h + h2 ≈ 66 km; this is about 10% 
larger than what was calculated from our first model. This is a rule of thumb that 
holds for all sight distances since R1 is roughly 20% larger than R and because the 
square root of the earth radius is needed to determine the sight distance, s1 is about 
10% larger than s (as √ 1.2 ≈ 1.1 ).

In the following, we will, nevertheless, continue to use the first model because it 
does not require physical knowledge beyond usual, everyday knowledge.

Another critical reflection on our solution concerns the question of what we 
mean by “sight distance”. Do we really mean the distance between the point where 
we stand on the tower and the horizon, or do we mean the distance on the surface 
of the earth between the foot of the tower and the horizon? Normally, distances 
between objects on the earth are measured on the surface, so, technically speaking, 
a distance is the length of the arc on the corresponding circle. Let us calculate this 
arc length in the present example. For that, we need the angle α at M in our right-
angled triangle (see Figure 3.6).

FIGURE 3.6 Mathematical model with angle
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By means of trigonometry, we get cos(α) = R/(R+h) = 6,371/6,371.281 ≈ 
0.99995558 and hence α ≈ 0.54° – a very small angle! This is clear because h is 
very small compared to R, as is s, so the triangle in our model is very “flat”. Now 
we can calculate the unknown arc length a via a/C = α/360° where C = 2πR is the 
circumference of the earth circle. The result is, rounded off to integer kilometres, 
a ≈ 60 km, the same result as in the first model. Therefore, the difference between 
the arc length and the distance in the air does not matter. This was to be expected 
since the height of the tower is very small compared to this distance, so the triangle 
formed by the tower, the sight line segment in the air and the sight arc on the earth 
are also very “flat”.

A generalisation

We have solved the special problem of finding how far we can see from the third 
platform of the Eiffel Tower. However, the formula we have developed holds for 
any height h. So, for instance, if we look from the roof of a building which is 120 
m high, the formula gives a sight distance of circa 39 km. We see in our calculation 
that the term h2 only contributes marginally to the result (in fact, the two results 
with and without h2 for h = 120 m differ by 0.00018 km; this is 18 cm – not 
a reasonable accuracy to take into account, given the accuracy of the rounded 
quantities R and h). As h is very small compared to R, h2 is very small compared to 
hR and thus can be omitted. We end up with the formula s ≈ √2Rh where R is a 
constant. This means that s is (approximately) proportional to the square root of h, 
a remarkable result. For instance, if we want to see twice as far, we have to be four 
times as high up. Differently put, a tower twice as high as another tower allows for 
an approximately √2 times as big sight distance (i.e., 41% more).

If we measure h in m, say h=h0  m where h0 is a positive real number indicating 
the numerical value of the quantity h, we can calculate:

√2Rh ≈ √12,742km · h0 m = √12.742 · h0 km2 ≈ 3.57 · √h0  km

or roughly s ≈ 3.5 · √h0 km. In words: If you want to know your sight distance in 
km, take the square root of your distance from the ground in m and multiply this 
number by 3.5 (sometimes known as the “mountain climber rule”). With this for-
mula, we can calculate approximate sight distances within seconds in our head. For 
instance, in the case of the Eiffel Tower, with h = 281 m, we have √h0 = √281 ≈ 17 
and therefore s ≈ 3.5 · 17 km ≈ 60 km.

With this formula, we can also answer an inverse question quite easily. Supposed 
we are in the Forêt de Fontainebleau, 65 km away from the Eiffel Tower. Can we 
still see part of the tower? Dividing 65 by 3.57 and squaring the result, we get h0 ≈ 
330, which means we can see, from this point, something which is approximately 
330 m high. The highest point of the Eiffel Tower is 324 m; according to this cal-
culation, we cannot see this point. However, due to refraction (see above), we might 
nevertheless see the top of the antenna on the Eiffel Tower.
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The lighthouse problem

We can now treat a related but different problem in the context of sight beams and 
sight distances. In former times, lighthouses with their beacons showed ships that 
they were approaching the coast. As an example, we take the famous lighthouse 
Faro do Cabo de São Vicente on the Southern coast of Portugal. It is 28 m high and 
located on a rock so that its beacon is 86 m above sea level (Figure 3.7).

The question is: How far away from this lighthouse is a ship when people 
onboard can see the beacon of the lighthouse for the first time?

We presuppose again that the earth is a sphere (so, for instance, no water waves 
are influencing the sight) and that the weather conditions are good. If the ship 
is only considered as a point on the water, then this question is simply a special 
instance of the sight problem that we just solved (for it is, of course, the same dis-
tance looking from the lighthouse to the ship as vice versa). So the point-like ship 
is 3.57 · √86 km ≈ 33 km away. However, a ship is not a point but an object with a 
height. We imagine a ship where a sailor looking for the lighthouse is 15 m above 
sea level. Then the lighthouse can be seen for the first time before the ship reaches 
the horizon point from where the lighthouse would be seen for the first time from 
a point-like ship. Instead, it can be seen from the moment when the observer can 
see that horizon point. An appropriate mathematical model comprises two adjacent 
right-angled triangles, with sides on a common tangent line, as in Figure 3.8.

We denote by H the height of the lighthouse, by h the height of the ship, by S the 
sight distance from the lighthouse to the horizon point in direction of the ship, and 

FIGURE 3.7 Lighthouse Faro do Cabo de São Vicente in Portugal
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by s the sight from the ship to the same horizon point. We are looking for the dis-
tance between ship and lighthouse, which is S + s. Then, similar considerations and 
calculations as in the Eiffel Tower problem (Pythagorean theorem applied twice) 
result in S ≈ √2RH and s ≈ √2Rh, so:

S + s ≈ √2RH + √2Rh = √2R · (√H + √h).

We had already calculated S ≈ 33 km for H = 86 m, and we get s ≈ 14 km for 
h = 15 m, so altogether we find circa 47 km. Thus, the answer to our question is: 
A ship with a height of 15 m is approximately 47 km away from the lighthouse at 
Cabo de São Vicente when the lighthouse can be seen for the first time.

Concluding remarks

The sight range problem exemplifies that mathematical modelling often requires 
real-world knowledge, in this case that the earth is approximately a sphere. In class-
room experiments at school and university, the first approach by many students to 
solve this problem is a sketch of a right-angled triangle with the tower, a segment of 
the flat earth and the sight beam from the top of the tower to the other end of this 
segment. It is a non-trivial step to realise that this is an inappropriate model because 
the earth is not flat and what limits the sight range is the curvature of the earth.

The example also shows that sometimes an established model can be used 
and extended to cover a more complex problem situation. If we started with the 
lighthouse problem, we would have to develop first the same model as for the 
Eiffel Tower problem (one triangle) and then extend it (two triangles) again by 

FIGURE 3.8 Mathematical model of the lighthouse situation
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using real-world knowledge about the earth. Another more general feature of this 
example is the possibility of different mathematical treatment approaches once the 
mathematical model has been established. The sight distance can be calculated by 
using either the Pythagorean theorem or trigonometric relations. A purely graphic 
approach (which often is an alternative to calculations when geometric shapes like 
triangles are involved) would not work here because one angle in the model triangle 
is too small to be accurately drawn.

Example 4: Paper formats (DIN A)

Designing paper formats

Let us first imagine that we wish to design a system of paper sheet formats with the 
following three properties (cp. Figure 3.9):

FIGURE 3.9 The system of A-paper formats
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1 Each sheet of paper is rectangular.
2 The area of the largest sheet of paper in the system is 1m2.
3 If any sheet of paper in the system is bisected across a mid-point transversal 

between the two longer sides, each half sheet also belongs to the system and is 
similar to the previous one, i.e., the proportions between corresponding sides 
are the same.

These properties reflect certain practical needs or advantages in dealing with such 
paper sheets, including aesthetic aspects (property 3 means that each sheet “looks 
the same” when seen from any distance). Major advantages of having this system 
are that any sheet in the system can be made from the same basic “mother sheet” 
by a number of simple cuts and that everybody dealing with paper sheets, be it 
everyday users or producers of envelopes, knows what sizes are available and can 
act accordingly.

But can these requirements actually be satisfied? If so, what are the dimensions of 
each sheet? Is there more than one solution to the design problem?

In addition to the requirements stated, dealing with this problem involves mak-
ing a few basic assumptions about the paper world reality we have in mind: Sheets 
can be cut precisely by machinery and are thin enough to be folded at least once, 
as we wish.

We are now ready to mathematise the situation. Let us begin by observing that 
each sheet has the same shape, so we are dealing with a scaling problem. As each 
successive sheet is half that of the previous one, the length scales down by 21/2.

Now for the details: We denote the n’th sheet in the system by An, n ≥ 0. Cor-
responding to requirement (1), An is mathematised as a rectangle, defined in terms 
of its dimensions (ln, sn), where ln indicates the length of the longer side and sn the 
length of the shorter side.

The remaining requirements, (2) and (3), are mathematised as:

• (a) Largest sheet, A0: l0 · s0 = 10,000 cm2

• (b) Similarity: For every n ≥ 0 we must have ln+1/sn+1 = ln/sn,
• (c) Sheet bisection: ln+1 = sn and sn+1 = ln/2, for every n ≥ 0.

The mathematised questions then become:

• Does there exist a sequence of pairs (ln, sn), n ≥ 0, consisting of positive ele-
ments, that satisfies (a), (b) and (c)?

• If so, what elements does/can this sequence of pairs have?

The mathematical domain for this mathematisation consists of lengths, that is, non-
negative real numbers with length units (usually cm or mm) and sequences.

We are now ready to answer these questions by undertaking a mathematical 
treatment of the situation.
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First, we observe that since for all n ≥ 0, ln+1/sn+1 = ln/sn, and ln+1 = sn as well as 
sn+1 = ln/2, we obtain by insertion of the latter relation into the former: ln/sn = ln+1/
sn+1 = sn/(ln/2), which gives us an equation linking ln and sn, namely ln

2 = 2sn
2, i.e.,:

ln = 21/2 sn,

valid for all n ≥ 0.
This also holds for n = 0, yielding l0 = 21/2 s0. Now, since we must also have 

l0 s0 = 104 cm2, insertion of l0 expressed in terms of s0 yields 21/2 s0
2 = 104 cm2, 

i.e., s0 = 102/21/4 cm. Hence, l0 = 21/2 s0 = 21/2 102/21/4 cm = 21/4 102 cm. So 
for n = 0, we have obtained:

l0 = 21/4 102 cm, and s0 = 102/21/4 cm.

Next, we have l1 = s0 = 102/ 21/4 cm and s1 = l0/2 = 21/4 102/2 cm = 102/23/4 cm. 
Continuing by recursion, we obtain for any n ≥ 0:

ln = 102/2(2n− 1)/4 cm and sn = 102/2(2n+1)/4 cm,

relations which can be formally proved by induction on n.
These results answer the initial questions. Yes, there does exist a – uniquely 

determined – (infinite!) sequence of paper sheet formats satisfying all the desired 
properties. The dimensions of sheet An are:

ln = 102/2(2n− 1)/4 cm and sn = 102/2(2n+1)/4 cm.

Thus, for example, the dimensions of the prevalent A4 sheet are:

l4 = 100/27/4 cm ≈ 29.7301778751 cm ≈ 29.7 cm and  
s4 = 100/29/4 cm ≈ 21.0224103813 cm ≈ 21.0 cm.1

What we have done in this section is that we have helped create a piece of reality 
by designing a uniquely determined system of paper formats fulfilling certain initial 
requirements. More specifically, we have undertaken “prescriptive modelling”.

How can we validate this model? The fundamental validation consists of 
observing that our initial three wishes allowed for a translation into mathemati-
cal requirements that could indeed be fulfilled – in fact in one and only one 
way. If more than one solution had existed, we could have decided to consider 
additional wishes or requirements, but as this is not the case, the only thing we 
can do is to re-visit these wishes and check, once again, whether they still cor-
respond to the initial purposes of the whole endeavour or whether they ought 
to be subject to change or amendment. Beyond this, as the model is creating 
reality rather than describing it, no further confrontation of the model with 
reality is meaningful.
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Analysing existing paper formats

However, the system of A-paper formats does, in fact, already exist as a physical and 
social reality. The papers can be purchased in millions of paper and stationery shops 
around the world. Imagine now that we wanted to uncover a possible underlying 
pattern in this system of paper formats which is taken to be unknown to us, thus 
asking the question: What are the patterns and principles in and behind these sheet 
formats?

Conducting an empirico-physical investigation of these paper formats would 
involve making physical measurements of the formats, leading to the discovery of 
the rectangular shape of all sheets (property 1) as well as to tables of lengths and 
widths of the sheets, which also can be retrieved from various official websites of 
A-paper formats. Here is an excerpt of such a table (all lengths and widths rounded 
off to whole millimetres):

 A0: 1,189 mm × 841 mm
 A1: 841 mm × 594 mm
 A2: 594 mm × 420 mm
 A3: 420 mm × 297 mm
 A4: 297 mm × 210 mm
 A5: 210 mm × 148 mm
 A6: 148 mm × 105 mm
 A7: 105 mm × 74 mm
 A8: 74 mm × 52 mm
 A9: 52 mm × 37 mm
A10: 37 mm × 26 mm

If we mathematise this situation by denoting, again, the dimensions of the longer 
and smaller sides by ln and sn, respectively (n ≥ 0), we observe directly from the table 
that:

i ln+1 = sn for n = 0, . . .,9.

It also looks as if:

sn+1 ≈ ln/2 for n = 0, . . .,9,

which leads us to stating this as a hypothesis, that is:

ii sn+1 = ln/2 for n = 0, . . .,9.

Combining observation i and hypothesis ii, we obtain, as a derived hypothesis, that:

iii (ln+1, sn+1) = (sn, ln/2) for n ≥ 0,
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which means that sheet A(n+1) is assumed to be obtained by folding sheet An along 
the midpoint transversal of the longer sides, which corresponds exactly to the first 
part of property 3 above. From i and hypothesis ii, we immediately get:

ln+1/sn+1 = sn/(ln/2) = 2sn/ln, n ≥ 0

and therefore also:

ln/sn = 2sn− 1/ln− 1, n ≥ 1,

which by insertion into the previous equation yields:

ln+1/sn+1 = 2sn/ln, = 2 (ln− 1/2sn− 1) = ln− 1/sn− 1, for n ≥ 1.

From this relationship, we make the more general hypothesis that the ratios between 
the sides are the same for all sheets:

iv ln+1/sn+1 = ln/sn for n ≥ 0

which corresponds exactly to the second part of property 3 above. From these rela-
tionships, we can deduce in the same way as in the previous section that:

sn/(ln/2) = ln/sn,

whence

ln = 21/2sn.

Especially, l0 = 21/2s0, and l1 = 21/2s1 = 21/2l0/2 = 2–1/2l0, and further on, yielding:

ln = 2-n/2 l0, for n ≥ 0.

Therefore, as sn = 2–1/2ln = 2–1/2 2 –n/2l0, we also have:

sn = 2-(n+1)/2l0, n ≥ 0.

This still does not capture the specific dimensions of the paper sheets, only the rela-
tionships between them. However, we see that all the dimensions are specified in 
terms of the value of l0, which we can read off from the official table, l0 = 1,189 mm.

Unlike the previous situation, this time we can validate our model with respect 
to reality. We shall do this by confronting the model outcomes with real data (www.
da.wikipedia.org – again all values rounded off to whole mm):

http://www.da.wikipedia.org
http://www.da.wikipedia.org
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Reality

 A0: 1,189 mm × 841 mm
 A1: 841 mm × 594 mm
 A2: 594 mm × 420 mm
 A3: 420 mm × 297 mm
 A4: 297 mm × 210 mm
 A5: 210 mm × 148 mm
 A6: 148 mm × 105 mm
 A7: 105 mm × 74 mm
 A8: 74 mm × 52 mm
 A9: 52 mm × 37 mm
A10: 37 mm × 26 mm

Model outcomes

 A0: 1,189 mm × 841 mm
 A1: 841 mm × 595 mm
 A2: 595 mm × 420 mm
 A3: 420 mm × 297 mm
 A4: 297 mm × 210 mm
 A5: 210 mm × 149 mm
 A6: 149 mm × 105 mm
 A7: 105 mm × 74 mm
 A8: 74 mm × 53 mm
 A9: 53 mm × 37 mm
A10: 37 mm × 26 m

It is evident that the model outcomes are almost identical to the real values and in 
the 3 out of 12 cases in which there is a difference (marked in bold in the table above), 
this difference is very minor. So, it is fair to claim that the model outcomes have 
been validated with overwhelming success, so much that the model itself deserves 
a very positive evaluation. In other words, we can safely claim that our descriptive 
modelling activity has successfully uncovered the principles and mechanisms that 
underlie the data pattern observed.

We observe that 21/2s0
2 = l0s0 = 999,949 mm2 ≈ 106 mm2 when:

s0 = 1032 –1/4 mm and l0 = 1032 –1/421/2 mm = 10321/4 mm,

yielding:

ln = 2 –n/210321/4 mm = 1032 –(2n− 1)/4 mm
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and:

sn = 2–1/2ln = 2–1/21032–(2n− 1)/4 mm = 1032–(2n+1)/4 mm.

Altogether, our mathematisation has re-generated properties 1, 2 and 3 above, as 
well as the mathematical consequences of these properties. So, the outcome of the 
descriptive modelling we have conducted is as follows:

ln = 103 / 2(2n− 1)/4 mm = 102 / 2(2n− 1)/4 cm

and:

sn = 103 / 2(2n+1)/4 mm = 102 / 2(2n+1)/4 cm for n ≥ 0.

In other words, our descriptive mathematical modelling of the reality of A-paper 
formats has given rise to the very same results as obtained in the prescriptive model-
ling of the first section.

Concluding remarks

This example presents and analyses two sides of the same coin. First, we 
assumed that we wanted to create a piece of paper world reality that fulfilled 
some more or less natural wishes or requirements. We succeeded in realising, 
by mathematical means, that this is possible in one and only one way. Second, 
we took the dual view of considering and describing aspects of an already 
existing paper world to uncover the principles and mechanisms that lie behind 
the system of A-paper formats. We succeeded to do so to such an extent that 
if the design principles and mechanisms thus uncovered were put to use, this 
would result in the very same paper sheet formats (modulo insignificant devia-
tions stemming from rounding) that came out of the prescriptive modelling 
activity presented in the first section. This might seem to be self-evident, but 
it is not since we arrived at the same result from two very different points of 
departure, a theoretical and an empirical one.

It should finally be mentioned that this example displays a duality between 
prescriptive and descriptive modelling, very similar to the duality in the loan amor-
tisation example to follow.

Example 5: Loan amortisation

The problem situation: loans

In the financial world, there is a multitude of different types of loans to finance 
private investments, such as buying a home, a summer cottage, a car or a boat; 
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renovating your garden, roof, or heating system; or simply financing parts of your 
general consumption. One such type of loan is the so-called “constant repayment 
loan”, also known in some countries as an “annuity loan”. In such a loan – which 
one typically gets from a bank or another kind of financial institution – you enter 
an agreement with the provider of the loan, let’s called it “the bank” for simplicity. 
You agree that you will have repaid a loan of a certain sum, called the “principal”, 
plus “interest”, after a certain number of terms, at each of which you pay a fixed 
amount of money, called the “service payment per term”. The “interest rate” – per 
year or per term – is fixed throughout the “maturity” (duration) of the loan, i.e., 
for each term. The service per term, which then is constant in an annuity loan, 
is composed as a sum of the interest per term and the repayment per term of the 
principal. The debt remaining after the service of a term has been paid is called 
the (outgoing) “balance”. This amount then becomes the ingoing balance for 
the next term. A table listing the service, the interest and the repayment per term 
for all the terms is called the “amortisation” profile of the annuity loan, the word 
amortisation suggesting that this is the way in which the debt is, step by step, being 
“put to death”.

Here is an example of an amortisation profile of an annuity loan from a cer-
tain financial institution in Denmark, Bankinfo. The principal of the loan is DKK 
100,000; the maturity of the loan is 10 years, with service every quarter (i.e., 4 · 10 = 40 
terms altogether); and the annual interest rate is 3%. The profile does not take infla-
tion into account, so all figures refer to the year at which the loan was established. If 
future inflation were to be considered, assumptions or estimates concerning future 
inflation rates would have been needed.

First comes a table (supplied by the bank on its webpage and translated by us) 
summarising the loan:

Total service per year DKK 11,612.06

Service per term DKK 2,903.02

Service per month DKK 967.67

Interest rate per term in % 0.75

Total interest during the maturity DKK 16,120.62

Then comes the amortisation profile (also supplied by the bank). The table has to 
be read as follows: At the beginning of each term, primo indicates the ingoing bal-
ance; at the end of the term, the constant service of DKK 2,903.02 is paid, leaving 
an outgoing balance (ultimo) of the ingoing balance minus DKK 2,903.02 to the 
next term. The service is composed as a sum of an interest part and a repayment 
part, both of which vary along with the terms. Observe that numbers are rounded 
off to integer DKK:
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Year Term Primo 
Debt

Interest Repay- 
ment

Ultimo 
Debt

Year Term Primo 
debt

Interest Repay- 
ment

Ultimo 
Debt

1 1 100,000  750 2,153 97,847 6 1 53,729  403 2,500 51,229

1 2  97,847  734 2,169 95,678 6 2 51,229  384 2,519 48,710

1 3 95,678 718 2,185 93,492 6 3 48,710 365 2,538 46,173

1 4 93,492 701 2,202 91,291 6 4 46,173 346 2,557 43,616

1, sum  2,903 8,709 6, sum   1,499 10,113

2 1 91,291 685 2,218 89,072 7 1 43,616 327 2,576 41,040

2 2 89,072 668 2,235 86,837 7 2 41,040 308 2,595 38,445

2 3 86,837 651 2,252 84,586 7 3 38,445 288 2,615 35,830

2 4 84,586 634 2,269 82,317 7 4 35,830 269 2,634 33,196

2, sum  2,638 8,974 7, sum   1,192 10,420

3 1 82,317 617 2,286 80,031 8 1 33,196 249 2,654 30,542

3 2 80,031 600 2,303 77,278 8 2 30,542 229 2,674 27,868

3 3 77,278 583 2,320 75,408 8 3 27,868 209 2,694 25,174

3 4 75,408 566 2,337 73,071 8 4 25,174 189 2,714 22,460

3, sum  2,366 9,246 8, sum   876 10,736

4 1 73,071 548 2,355 70,716 9 1 22,460 168 2,735 19,725

4 2 70,716 530 2,373 68,343 9 2 19,725 148 2,755 16,970

4 3 68,343 513 2,390 65,953 9 3 16,970 127 2,776 14,194

4 4 65,953 495 2,408 63,545 9 4 14,194 106 2,797 11,398

4, sum  2,086 9,526 9, sum   550 11,062

5 1 63,545 477 2,426 61,118 10 1 11,398 85 2,818 8,580

5 2 61,118 458 2,445 58,673 10 2 8,580 64 2,839 5,741

5 3 58,673 440 2,463 56,211 10 3 5,741 43 2,860 2,881

5 4 56,211 422 2,481 53,729 10 4 2,881 22 2,881 0

5, sum   1,797 9,815 10, sum   215 11,398

Now the question arises: Where do all these figures come from, i.e., how did the 
bank calculate them? Well, some of the figures in the summary table are easily 
traceable. The quarter term interest rate has been obtained by simply taking one-
fourth of the annual interest rate of 3%. It is also clear that if we know the monthly 
service of DKK 979.67, we can find the quarterly service 979.67 · 3 ≈ 2,903.02; 
the annual service 979.67 · 12 ≈ 11,612.06; and the total service during the 
maturity of the loan by multiplying this number by 10, yielding 116,120.60. Sub-
tracting the principal 100,000, we get the total interest paid during the 10 years, 
16,120.60, which is almost the same as the figure indicated in the table. However, 
where on earth do the figure 979.67 and all the other figures in the amortisation 
table come from? In other words, what are the underlying principles and patterns 
that are responsible for generating all these numbers? It is worth noting that in the 
first terms of the amortisation period, the constant service includes a rather large 
interest, whereas in the final terms only a very small part of the service is interest.
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Modelling the situation

The following are defining facts of annuity loans that have already been mentioned:

• One and only one amount of money, named the principal, was borrowed when 
the loan was established. We denote the principal amount by P, which is a posi-
tive real number with some currency unit attached.
• In our example above, the principal is P = 100,000 DKK.

• The loan is to be paid back over a given integer number of terms, named the 
maturity of the loan. We denote the number of terms by the positive integer N.
• In our example, each term is a quarter of a year, and the maturity of the 

loan is 10 years, hence 40 terms, i.e., N = 40.

• The interest rate per term is fixed during the maturity of the loan. We denote 
this rate by the positive real number r.
• In our example, the interest rate per term is 0.75%, i.e., r = 0.75/100.

• At the end of each term, the borrower pays a fixed amount, named the service, 
to the provider of the loan. We denote this amount by S, which again is a posi-
tive real number with the same currency.
• In our example, the service per quarter term was given as S = 2,903.02 

DKK.

As we have seen, this is not enough to explain the specific amortisation profile 
of the loan, nor the way in which the service S has been determined. To provide 
answers to our questions we make some further assumptions:

1 At the end of each term, the interest generated by the ingoing balance, i.e., the 
remaining debt at the beginning of the term, is paid from the service. What 
remains of the service is used as repayment to reduce the balance of the term to 
generate a lower outgoing balance, which then is the new ingoing balance for 
the next term. This scheme is continued for all the terms, except the last one, 
from which there is no outgoing balance.

2 After the last service, at the end of the last term, the remaining debt is 0 DKK, 
and the loan has thus been amortised, i.e., paid fully back.

3 No inflation (or deflation, for that matter) is being taken into account.

We are now ready to mathematise the situation by translating the defining loan 
characteristics and the assumptions into mathematical terms.

After the end of the first term, the principal P has generated an interest rP, 
to be paid from the service S. The remainder S – rP is used as repayment on the 
principal. This means that the remaining debt, the outgoing balance, P1, after 
term 1 is given by:

P1 = P – (S – rP ) = P(1 + r ) – S.
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We can also interpret this relationship as showing – equivalently – that the ingoing 
debt is increased during the term by adding the interest and then reduced by sub-
tracting the service payment at the end of the term.

For term 2, the same pattern is repeated but now with P1 as the new ingoing 
balance. So, at the end of term 2, the balance has been reduced to yield:

P2 = P1(1 + r ) – S = (P(1 + r ) – S )(1 + r ) – S = P(1 + r )2 – S(1 + r ) – S

as the outgoing balance after term 2 and hence as the ingoing balance for term 3. 
Continuing in this manner throughout the terms, we obtain the following expres-
sion of the remaining debt, the outgoing balance, after term n, n > 1:

Pn =  Pn− 1(1 + r ) – S = P(1 + r )n – S(1 + r )n–1 – . . . – S(1 + r ) – S =  
P(1 + r )n – S((1 + r )n–1 + . . . + (1 + r ) + 1).

Here we observe that the sum (1 + r )n–1 + . . . + (1 + r ) + 1 is the sum of a finite 
geometric series, which yields:

(1 + r )n–1 + . . . + (1 + r ) + 1 = [(1 + r )n – 1]/[(1 + r ) – 1] = [(1 + r )n – 1]/r.

Inserting this, we obtain:

(i) Pn = P(1 + r )n – S[(1 + r )n – 1]/r

as the general expression of the outgoing balance after term n.
This expression is derived on the assumption that S is known. However, it is 

not – yet! But we can in fact determine it by invoking assumption 2, that the loan 
is paid back after the end of term N. For, this assumption implies the equation (in 
the unknown S):

0 = PN = P(1 + r )N – S[(1 + r )N – 1]/r,

such that:

(ii) S = [P(1 + r )N · r ]/[(1 + r )N – 1].

Traditionally, in order to avoid powers both in the numerator and the denominator, this is 
reduced by multiplying both the numerator and the denominator by (1 + r )–N, yielding:

(iia) S = P r/[1 – (1 + r )–N ].

Let us check whether this corresponds to the value of S (= 2,903.02 DKK) in our 
example, recalling that P = 100,000 DKK, r = 0.75/100, and N = 40. Utilising that 
(1 + 0.75/100)–40 = 1.0075 –40 ≈ 0.741647961, we get:
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S ≈ 100,000 DKK · 0.0075/(1 – 0.741647961) =  
750 DKK/0.258352039 ≈ 2,903.37 DKK,

which is very close to, but not completely identical with, the figure in the example. 
The difference is due to different rounding procedures in our computations and in 
those of the bank. Finding out who is right is not our business at this point. The 
most important thing is that we have been able to uncover the principles and the 
patterns of the amortisation profile of annuity loans.

We can further determine the other variables in the profile on the basis of (i) and 
(ii). The remaining figures that interest us follow immediately from the value of S.

Interest rates by term and by year

One more remark is warranted here. In the table given by Bankinfo, it is stated that 
an interest rate of 3% per year corresponds to an interest rate of 0.75% per quarter 
term. In fact, this is not correct if we refer to the usual way in which money grows 
in value on a bank account because the quarter term interest rate should give rise to 
compound interest during a year. If an amount A accumulates interest at a rate of  
r per quarter term, then A has increased to A(1 + r )4 after four terms. If the annual 
interest is s, then we must have A(1 + r )4 = A(1 + s ), which yields s + 1= (1 + r )4 or, 
equivalently, r = (s + 1)1/4 – 1. In the case of our example, where s = 0.03, we obtain r = 
1.031/4 – 1 ≈ 0.007417072 and not 0.0075. This would give rise to a different value 
of S, namely 750 DKK/(1 – 0.007417072–40) ≈ 750 DKK/(1 – 0.744093908) =  
750 DKK/0.255906092 ≈ 2,930,76 DKK. This suggests that in the table provided 
by Bankinfo, the fixed point is the quarter term interest rate of 0.75% rather than an 
annual interest rate of 3%. Conversely, a quarterly interest rate of 0.75% corresponds 
to an annual interest rate of 3.0339% since 1.00754 – 1 ≈ 0.30339191.

However, the scheme adopted by many banks is that money grows with com-
pound interest only if the time interval is more than one year. Within a year, banks 
oftentimes regulate the growth of money in a linear rather than in an exponential 
fashion, as did Bankinfo in our example, so that a quarterly interest rate of 0.75% 
without compounding does in fact correspond to an annual interest rate of 3%.

Validation and evaluation

Validating the model answers obtained consists in assessing how well these answers 
conform to the empirical reality. The empirical reality here is constituted by the 
amortisation profile presented by Bankinfo. Of course, other empirical realities 
stemming from other financial institutions might have been considered as well. In 
this case, the model answers are in very close agreement with the empirical amor-
tisation profile, which means that we can consider the model answers validated.

Answer validation is one of the means by which the model built can be vali-
dated. As the purpose of the model is a descriptive one, namely to uncover the 
principles and assumptions underlying the empirical amortisation profile and to 
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reconstruct the pattern displayed therein, it is fair to say that the model con-
structed does this job to a very satisfactory extent. In other words, the evaluation 
of the model yields a positive result. Of course, if we wanted the model to also 
take inflation into account – which was not included in the amortisation profile 
presented – the situation would have been different, as a more elaborate model 
would have been called for.

Concluding remarks

What we have presented here is a piece of descriptive modelling. Taking the point 
of view of a concerned consumer, or a financial analyst, we wanted to capture and 
understand a section of financial reality as represented by the amortisation table 
found on the internet. Basing our model on the assumptions listed in 1, 2, and 3 
above, we were successful in this endeavour.

However, imagine that we had taken the point of view of a financial institution 
that wanted to construct a particular type of loan with the properties listed in 1, 2 
and 3, which would then be design requirements, the very same amortisation profile 
would be obtained as a result of prescriptive modelling.

This example illustrates how different modelling purposes may lead to the same 
model, as was also discussed in 2.5.

Example 6: Traffic flow

The problem and various mathematical models

Imagine dense traffic on a long single-lane road. The problem we want to consider 
is this: At which speed should cars go to maximise the flow rate, in other words, 
to maximise the number of cars passing by per unit time? An obvious first answer 
seems to be “as fast as possible”, but the faster the cars go, the larger the distance 
between two cars has to be for reasons of safety, and it is not obvious what an opti-
mal balance between speed and safe distance would be.

To be accessible, the situation has to be simplified and structured. A natural sim-
plifying assumption is:

1 All cars drive at the same speed (as they must when traffic is heavy),

supposing that we have a steady state traffic flow. Two other related and also rather 
obvious assumptions are:

2 All cars have the same length.
3 The distance between two cars is the same everywhere.

We write v for the speed of the cars, l for the car length and d for the distance 
between two cars (see Figure 3.10).
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It is clear that d somehow depends on v and that it does so in in a strictly isotonic 
way, that is, the larger v is, the larger is d. If we think of the real situation where two 
consecutive cars will have some distance between them and the driver in the car 
behind will have to adjust her/his speed to maintain a safe distance, it would also 
make sense to consider the inverse situation, where v depends on d. In the following, 
however, we shall always consider d as dependent on v.

Now, what exactly could/should “traffic flow rate” (sometimes also called “road 
capacity”) mean? To answer this question, we imagine a fixed point on the road 
(point P in Figure 3.10) where someone sits and counts the passing cars, and we 
define the “traffic flow rate” F as the number of cars per unit time passing by this 
point. Let us illustrate the situation by a concrete example: If the cars all drive at 
40 km/h and we count for one hour, then the following is clear: The last car which 
passes the counting point within this hour is at the beginning of the counting 
40 km away, and exactly that number of cars now driving on this 40 km section of 
the road are counted. How many cars are there on this 40 km section? The answer 
is obvious by using division: Each car covers l + d, so there are 40km/(l + d ) cars 
on these 40 km. The flow rate is therefore this number divided by 1 hour, hence:

F = (40 km/(l + d ))/1h = (40 km/h)/(l + d ) = v/(l + d ).

The same considerations can be made with any speed. The result is: The appropriate 
mathematical model for the traffic flow rate is given by the formula:

F = v/(l + d ),

where F, the number of cars per time, can be expressed in “number of cars/hour”.
Now we must determine the distance between two cars, recalling that d is sup-

posed to depend on v. There are various possibilities for “distance rules” that specify 
how d depends on v. The possibilities include the following rules, which in many 
parts of the world are actually used or even mandatory:

1 “Half speed rule”: d = (v0  /2) m (meters) where v0 means the number of km/h 
of the speed (so, e.g., v0 = 40 if v = 40 km/h) – a popular rule in many coun-
tries, although a rule which does not correspond to the physics of braking.

2 “1.5 seconds rule”: d = v · 1.5 sec (since speed is distance divided by time) – 
also a popular rule; for higher speeds often changed into the “2 seconds rule”, 
equally ignoring the physical laws.

FIGURE 3.10 Situation picture for traffic flow problem with variables
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3 “Driving school rule”: d = (3 · v0  /10 + [v0  /10]2) m (in Germany, one learns 
in the driving school “Divide the absolute measure of the speed in km/h 
by 10, multiply this number by 3 and also square it, and then add those 
two numbers; this gives you the distance you should keep in meters”); this 
distance model takes into account that the braking distance is in fact qua-
dratically dependent on the speed and not linearly as the first two models 
presuppose.

4 “Stopping distance rule”: d = v · tR + v2/(2 · a) where tR is the driver’s reac-
tion time (e.g., 1 second) and a is the braking deceleration (usual values in the 
range from 6 m/s2 to 9 m/s2); this model, a generalization of the driving school 
model, assumes that it ought to be possible to brake if the car in front stops 
immediately.

5 “Front car rule”: d = v · tR + 1/2[1/a – 1/b]v2 where b is the braking decelera-
tion of the car in front; this model takes into account that the car in front also 
needs some space to stop, so the model seems more appropriate for the actual 
situation.

In each case, the flow rate F is a function of the speed v, where the concrete function 
depends on the distance rule used: d = di(v) (i = 1, . . .,5). So:

F = v/(l + di(v)) = fi(v) (i = 1, . . .,5).

This implies that we have five different mathematical models of our traffic flow 
situation. The mathematical problem is then to maximise fi. The first two distance 
functions are linear (considering only the reaction time); the next two are quadratic. 
The “front car” function is quadratic unless a = b; in this case, it is also linear (if 
both cars have the same braking deceleration then only the reaction time matters).

Let us ignore, for a moment, all the units and write down the five functions fi 
with v as a variable (where v is measured in m/s), specifying l to 4 m, tR to 1 sec, a 
to 6 m/s2 and b to 9 m/s2:

f1(v) = v/(4 + v/2)
f2(v) = v/(4 + 1.5v)
f3(v) = v/(4 + 0.3v + v2/10)
f4(v) = v/(4 + v + v2/12)
f5(v) = v/(4 + v + v2/36)

Figure 3.11 shows the graphs of these five functions.

Solutions to the problem

We will now get different solutions to the original problem, depending on the 
mathematical models chosen. We can find easily that both f1 and f2 are strictly 
increasing and converging towards an asymptotic (saturation) value, 2 for f1 and 
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2/3 for f2. Both graphs are parts of hyperbolas, which can be seen by rewriting, for 
example, f1 in the form:

f1(v) = 2v/(8 + v) = 2(8 + v – 8)/(8 + v) = 2(1 – 8/(8 + v)) = 2 – 16/(8 + v)

so the graph of f1 results from the graph of the basic hyperbola given by f (v) = 
1/v (only its right branch is relevant here) by a translation by 8 to the left, then a 
dilatation by 16 parallel to the second axis, then a reflection on the first axis and 
finally an upward translation by 2. When interpreted in terms of the real situation, 
this implies that in fact the flow rate increases with increasing speed in these two 
models, a result that passionate fast-drivers will appreciate. However, because of the 
asymptotic behaviour of f1 and f2 , a relatively big increase of the speed will result in 
a relatively small increase of the flow rate only, so simply increasing the speed may 
not be worth the effort.

We further find that there exists a maximum value somewhere for each of the 
functions f3, f4 and f5 since in all three cases it is clear, both formally and contextu-
ally, that fi(0) = 0 and fi(v)  → 0 if v → ∞ and the functions are rational and hence 
continuous, that is, they make no leaps. The maximum value for these three func-
tions can be determined, approximately, graphically or numerically, and precisely 
with methods from differential calculus. As an example, let us do the latter for f4. 
The derivative of f4 is:

f’4(v) =  [(4 + v+ v2/12) – v(1 + v/6)]/(4 + v + v2/12)2 =  
(4 – v2/12)/(4 + v + v2/12)2.

FIGURE 3.11 Graphs of flow rate functions
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So f’4(v) = 0 exactly for v2 = 48, and the only relevant solution is v = √48 = 4√3. 
Therefore, f4 has a unique maximum at v = 4√3. In a similar way, we find the maxi-
mum of f3 at v = 2√10 and the maximum of f5 at v = 12.

By the way, there is also a more elementary – i.e., “calculus free” – method for 
determining the maxima of these three functions exactly, but it requires some effort. 
All three functions are of the form:

f(v) = v/(l + rv + sv2), so 1/f(v) = l/v + r + sv, for v ≠ 0.

Instead of maximising f, we can minimise 1/f or (since r as a constant is irrelevant) 
minimise g(v) = l/v + sv. The minimum of the sum of a proportional function and 
a reciprocal function is2 situated where these two functions have the same value. 
So the minimum of g and hence the maximum value of f is at v with l/v = sv that 
is v = √l/s, independent of r (which is interesting in itself  ). For the three functions 
this yields:

Minimum of f3 at v = √40 = 2√10
Minimum of f4 at v = √48 = 4√3 or more generally (see above) v = √2al
Minimum of f5 at v = √144 = 12 or more generally v = √2abl/(b–a).

So far, we have ignored the units. If we insert the correct units and assume once 
again l = 4 m, a = 6 m/s2 and b = 9 m/s2 then the maximum of f4 means, interpreted 
in the real-world situation, that the optimal speed for the cars according to the “stopping 
distance rule” is √48 m/s, that is approximately (since √48*3.6 ≈ 24.9) 25 km/h – a 
remarkably low value! The maximum value for f5 means that the optimal speed for 
the cars according to the “front car rule” is 12 m/s, that is approximately 43 km/h. 
This is also a value that passionate fast-drivers won’t like but higher speeds will 
either reduce the flow rate or (if the distance rules are ignored) increase the risk of 
a rear-end collision – and in case of an accident, the flow rate would immediately 
be reduced to zero.

Concluding remarks

The final activity is to validate the results and, if need be, to refine the model and the 
results. First, we observe that the maxima of these three functions f3, f4, f5 are “flat” 
as can be seen in Figure 3.11 (a property which maxima of differentiable functions 
generally have per se if they are continuously differentiable in a neighbourhood of 
the maximum point). This can be interpreted to saying that in reality it does not 
really matter for the flow rate if v is a bit smaller or larger than the precise maximum 
point.

There are other variables that we have not considered so far, e.g., the petrol 
consumption of the cars. The flat maximum just mentioned could again be inter-
preted as implying that it does not really matter for the flow rate if v is a bit smaller 
or larger than the precise maximum if this reduces the petrol consumption of the 
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car. Another variable of significance to the problem is the reaction time at braking, 
which may also depend on the speed (higher speed may mean a higher stress level, 
which may influence the driver’s attention in either direction) and, of course, on the 
attentiveness and the mental flexibility of the driver. Moreover, the whole problem 
depends on the technical equipment of contemporary cars. If all cars had optimal 
ABS brakes, then proportional distance rules would make more sense since in such 
circumstances the reaction time would be the decisive variable.

Example 7: Bertrand’s paradox

Thought experiment

Imagine the following thought experiment, which was initially introduced by the 
French mathematician Joseph Bertrand (1889). An extremely thin rod of length 
l is being dropped at random onto a plane surface in such a way that it hits an 
extremely thin circular ring of radius r lying in the plane in two points (where r is 
smaller than l/2 so that the rod cannot lie entirely inside the circle), thus giving rise 
to a chord “cut off ” from the rod (see Figure 3.12). What is the probability that 
the length of this chord is larger than the side of the inscribed equilateral triangle 
in the circle? Even though this may seem to be an artificial situation, it can actually 
correspond to a variety of physical experiments (see below) as well as computer 
simulations (Tessier, 1984).

Modelling the experiment

We can model this idealised experiment in three different ways. To do so, we pre-
pare ourselves by considering a little elementary geometry (Figure 3.13).

FIGURE 3.12 Rod, circle and inscribed equilateral triangle
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The size of all the three angles of an equilateral triangle inscribed in a circle of 
radius r is 600. As the three radii from the centre of the circle going to the three 
vertices of the triangle bisect these angles, they form angles of 300 with the sides 
of the triangle. Hence, the size of the altitude of a smaller triangle formed by two 
vertex radii and the side joining the vertices is given by r sin 300 = r/2. Similarly, 
half of the side length is given by r sin 600 = √3/2 · r, so the length of the side is r √3. 
Moreover, the equilateral triangle has an inscribed circle (with the same centre). As 
its radius is exactly the altitude of the small triangles determined by two vertices 
and the centre of the circle(s), the radius of the inscribed circle is r/2. One conse-
quence of this is that the side of the inscribed equilateral triangle bisects the radius 
perpendicular to the side.

Model 1: A chord is given by two points on the circle, P and Q. Let us choose 
one of them, say P. We can consider the inscribed equilateral triangle with one of 
its vertices placed in P (see Figure 3.14). Then the length of the chord is larger than 
the length of the side in the triangle exactly if the other point Q is situated on the 
arc between the two other vertices of the triangle. Since that arc is 1200, the prob-
ability that Q lies on it is 1200/3600 = 1/3. So, in model 1, the probability that the 
length of the chord is larger than the length of a side of the inscribed equilateral 
triangle is 1/3.

Model 2: For a randomly chosen chord, consider the inscribed equilateral trian-
gle whose side is parallel to the chord (see Figure 3.15). The perpendicular bisector 
through the midpoint of the chord is also the perpendicular bisector of the triangle 
side at issue. It passes through the centre of the circle and hence gives rise to a radius 
in the circle. The length of the chord is larger than the length of the side exactly 
if the point of intersection between the chord and the radius under consideration 
is closer to the centre than is the point S of intersection between the side and the 

FIGURE 3.13 Measures in the inscribed triangle
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radius. Since the side of the triangle bisects the radius, the chord is longer than the 
side exactly if its intersection point with the radius lies on the interior half of that 
radius. The probability of a point on the radius lying on its interior half is 1/2. 
Hence, in model 2, the probability that the length of the chord is larger than the 
length of the side is 1/2.

Model 3: A chord in the circle is determined by its midpoint (except if the 
chord is a diameter). The length of the chord is larger than the length of a side of 
the inscribed equilateral exactly if this midpoint lies inside the disc corresponding 
to the inscribed circle of the equilateral triangle. Since this inscribed circle has a 
radius of 1/2 (see Figure 3.16), the probability of the midpoint lying in this circle 

FIGURE 3.14 Chords in model 1

FIGURE 3.15 Chords in model 2
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is 1/4 because the area of the smaller circle is 1/4 of the area of the larger circle. 
This is not affected by discarding the chords that are diameters since this amounts to 
removing the centre from the two areas, and the area of a set consisting of a single 
point is 0. So, in model 3, the probability that the length of the chord is larger than 
the length of the side is 1/4.

Since the three models are meant to capture the same random experiment, it is 
somewhat mind boggling that they yield three different results. Therefore, the situa-
tion described is known under the name of Bertrand’s Paradox. Before looking into 
ways to settle this issue, we observe that the three models represent the randomness 
of the idealised experiment in three different ways.3

Analysing the models

In model 1, a random chord is specified by two points, P and Q, on the circle. As it 
only matters where Q is located once P is chosen, we can fix P in an arbitrary posi-
tion on the circle and let Q vary randomly over the circle. Since Q can be located 
anywhere on the circle (except in P), we consider the positions of Q as uniformly 
distributed over the circumference of the circle. As the positions of Q that give rise 
to a chord longer than the side of the equilateral triangle are exactly those on the 
arc between to two vertices opposite of P, our result follows from the fact that the 
size of that arc is 1/3 of the size of the whole circle. In technical terms, the sample 
space involved consists of the points on the circle, represented as angles in the inter-
val [0, 360], and the probability distribution chosen is the uniform distribution on 
that interval, corresponding to a density function constantly equal to 1/360 on the 
interval.

In model 2, a random chord (except for diameters) is specified and represented 
by its midpoint. As the only thing that matters in determining whether the chord 

FIGURE 3.16 Chords in model 3
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is longer than the side of the inscribed equilateral triangle is whether the midpoint 
of the chord is closer to the centre than half the radius, it is assumed in this model 
that all chords are placed in parallel so that their midpoints are all points on the 
same radius. We then assume those midpoints to be uniformly distributed over that 
radius, which can then be considered our sample space. This can be translated into 
a uniform probability distribution of distances to the centre over the interval [0, r] 
(corresponding to the density function constantly equal to 1/r on that interval).

In model 3, a random chord (except for diameters) is specified and represented 
by its midpoint. Once again, the length of the chord is larger than the side in the 
inscribed equilateral triangle exactly if its midpoint is closer to the centre of the 
circle than half the radius. Here, however, we take all possible positions of a chord 
into account, so the midpoint can be situated anywhere within the larger disc. So, 
we assume a uniform distribution of the midpoints over that disc, which is then 
considered our sample space. The chords which are longer than the triangle side are 
those with their midpoints positioned within the smaller disc of half the radius of 
the larger disc. The uniform probability distribution over the sample space is given 
by the density function constantly equal to 1/(pr2) on the larger disc.

Why is it that we can establish three (and even more) reasonable models of the 
situation in the thought experiment and obtain three very different results? That 
is because the random thought experiment is not well defined (Kac, 1984). What 
exactly does it mean that a chord is dropped at random onto a circle in a plane? 
The three different models conceptualise such a dropping in three different ways, 
where the randomness is expressed in terms of three different (one-dimensional) 
uniform distributions over the circumference of the circle, over its radius and over 
the interior points of the corresponding disc, respectively. It is therefore not possible 
to answer the question of which – if any – of the three models is the best model 
unless we specify precisely how the random experiment is going to be conducted.

Physical experiments

In 2002, a group of four first-year students at the Foundational Science Programme 
at Roskilde University wanted to make empirical experiments to see whether they 
could make physical realisations of Bertrand’s thought experiment in order to dis-
tinguish and possibly choose between the three different idealised models (Skytte 
et al., 2002).

For this to be possible, they had various physical instruments made at the depart-
ment workshop.

The first instrument was a quadratic metal plate on which the inscribed circle 
of the square and the inscribed equilateral triangle of the circle were engraved 
(see Figure 3.17). An arrow (“clock hand”) whose length was the radius in the 
inscribed circle was fixed at one end at the centre of the circle so that it could rotate 
freely, eight to nine times before it stopped. One of the vertices of the inscribed 
triangle was chosen, and the arrow was rotated 6–8 times until it stopped, and it was 
observed whether the endpoint of the arrow was situated on the 1200 arc between 
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the opposite vertices or not. This experiment corresponds exactly to model 1. The 
experiment was repeated 100 times, and it was found that the arrow’s endpoint was 
on this arc 33 times, corresponding to an empirical probability of 0.33, which was 
seen as providing confirmation that this physical realisation of the thought experi-
ment is reasonably well captured by model 1.

In order to test model 2, other equipment was devised and produced (see Fig-
ure 3.18). First, a rectangular cardboard with dimensions 600 mm ×  900 mm was 

FIGURE 3.17 Metal plate for experiments concerning model 1

FIGURE 3.18 Cardboard with parallel lines for experiments concerning model 2
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cut out and equipped with equidistant parallel lines, with a distance of 120 mm 
between the lines. Moreover, a flat planar disc was made of stainless steel, with a 
diameter of 120 mm. Also, a flat metal rod of length 103.9 mm ≈ 60√3 mm, i.e., 
the length of the side of the equilateral triangle in the larger circle, was produced. 
It was assumed that throwing this disc from a suitably large distance onto the card-
board was a random experiment equivalent to throwing a chord at random on the 
circle with a diameter of 120 mm. The metal disc thrown onto the cardboard will 
exactly cut one of the parallel lines (except in the rare cases where two lines are 
exactly tangent to the outer circle). Using the metal rod, one can tell whether the 
length of the chord on the outer circle is larger than the length of the triangle side 
(see Figure 3.18, in which we have also drawn the inscribed equilateral triangle for 
illustration). This is equivalent to the chord lying closer to the centre of the circle 
than half the diameter, which is the core of model 2. To test the results of model 
2, this experiment was performed 100 times. The outcome was that in 56 out of 
100 throws, the chord was longer than the triangle side, i.e., the empirical prob-
ability was 0.56, which deviates by 12% from the model result of 0.5. Given that 
100 throws are not that many, this result is not surprising. Once again, our physical 
experiment is a realisation of the thought experiment based on a uniform distribu-
tion of midpoints over a radius, as captured in model 2.

As finally regards model 3, a new piece of 600 mm ×  900 mm cardboard was 
produced, this time equipped with a grid of two orthogonal bundles of equidis-
tant parallel lines, with 120 mm as the distance between two neighbouring parallel 
lines (see Figure 3.19). Model 3 is based on the idea of randomly throwing a point 
(representing the midpoint of a chord) into the circle and checking whether it falls 
inside the inner circle of half the diameter. Instead of throwing the point into the 
circle, we can throw a metal ring with an outer diameter of 120 mm and an inner 

FIGURE 3.19 Metal ring and a cardboard with a grid for experiments concerning model 3
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diameter of 60 mm onto the plane and check whether a grid point lies in the inner 
circle or inside the metal ring between the two circles. While it will never happen 
that the entire ring/disc covers more than one grid point, it may happen, albeit sel-
domly, than no grid point is covered by the disc. In the rare cases where this actually 
did happen, the throw was not recorded. To cater for this, a total of 200 acceptable 
throws were made, and 49 of these gave rise to a grid point in the inner circle, cor-
responding to a chord longer than the side. The empirical probability is 49/200 ≈ 
0.245, which is within 2% of what is predicted by model 3.

Concluding remarks

While one cannot, of course, consider the three experiments conducted by the 
students as scientific in any strict sense, they were sufficient to serve their pur-
pose: to provide an empirical realisation of each of the three idealised models. 
In other words, the experiments demonstrate that all three idealised models 
do correspond to a realisable specification of what it may mean to throw a 
chord at random onto a circle. In more general terms, the thought experiment 
in combination with the physical experiments shed light on the very notion 
of randomness in the context of stochastic modelling and on the necessity of 
being extremely careful in specifying the nature of the random experiment lying 
behind any stochastic model. It is interesting to observe that, here, the realisa-
tions of three physical experiments were the judges in evaluating the theoretical 
models. Normally, the physical experiment comes first and a model is then con-
structed to capture it.

In conclusion, the physical experiments show that the apparent paradox in the 
models resulting from Bertrand’s thought experiment disappears once the random-
ness involved in the three models is specified.

Notes

1 The values of all side lengths and widths are irrational, which implies that the decimal 
expansions are infinite and aperiodic. Any cut off after a final number of decimals will 
therefore be an approximation. Of course, beyond a few decimals, say two or three, this has 
no practical significance.

2 To show this, let v0 be the value of v for which 1/v = sv, i.e., s = 1/v0
2. Then g(v) = 1/v + 

v/v0
2, for v > 0, and g(v0) = 2/v0

2. Then we have g(v) ≥ g(v0) if and only if 1/v + v/v0
2 ≥ 

2/v0, which (by multiplication of both sides with the positive number vv0
2  ) is equivalent 

to v0
2 + v2 ≥ 2vv0, which in turn is equivalent to (v0 – v)2 ≥ 0. Since the latter inequality 

always holds, we conclude that indeed g(v) ≥ g(v0 ) for any v > 0, which means that v0 is 
the (uniquely determined) minimum point for g.

3 As a matter of fact, one might imagine several other idealised models of the thought 
experiment. For example, since the lengths of chords are all elements in the interval [0,2r], 
the chords with length larger than the side of the inscribed equilateral triangle, i.e., r√3, 
have lengths in the sub-interval [r √3,2r]. Assuming a uniform distribution of chord lengths 
over the interval [0,2r], the probability that a chord is longer than the side is (2 – √3)/2 = 
1 – √3/2. Another possibility is to consider areas instead of lengths in models 1 and 2. 
In both models, all chords shorter than a side of the equilateral triangle constitute an area 
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consisting of two circle sections above one of its sides. The area of one of these sections is 
1/3 · (π – 3/4 · √3)r2, so the ratio of the areas of two sections and the whole circle is 2/3-
√3/2π, hence the probability that the chord is longer than one side is 1/3 + √3/2π.
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4.1 Introduction and brief historical outline

The interest in the teaching and learning of mathematical applications and mod-
elling that gained international momentum in the late 1970s soon expanded to 
include a focus on students’ ability to engage in and undertake mathematical mod-
elling processes. Researchers in the field – especially researchers belonging to the 
ICTMA community (see section 2.6) – began to speak of modelling achievement, 
modelling behaviour, modelling skills (Burkhardt, 1984; Galbraith & Clatworthy, 
1990; Edwards & Hamson, 1996; Stillman, 1998; Haines et al., 2001) and modelling 
capabilities (Niss, 2001). Around the turn of the 21st century, the notion of model-
ling competency and competencies as the common term for these abilities gradually 
came into general use.

One of the first publications on modelling in mathematics education, as opposed 
to the study of applications and models, attracting international attention, was the 
set of five modelling units distributed in the UK by the Open University (1978). 
As observed by various researchers, including Maaß (2006, p. 117) and Kaiser and 
Brand (2015, p. 132), early notions of modelling skills, abilities and competencies 
originated in researchers’ attempts to assess students’ modelling work, typically in the 
context of group work in which activities finished with a written report explaining, 
justifying and accounting for the work done. Thus Galbraith and Clatworthy (1990, 
p. 145) specified four assessment criteria stated in terms of modelling abilities: abil-
ity to specify the problem clearly; ability to formulate an appropriate model: choose 
variables and find relations; ability to solve the mathematical problem including 
mathematical solution, interpretation, validation and evaluation/refinement; and 
ability to communicate results in a written and oral form. Similarly, Money and 
Stephens (1993) described the assessment criteria for a Common Assessment Task 

4
MODELLING COMPETENCY 
AND MODELLING 
COMPETENCIES
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Investigative Project, not just for some but for all upper secondary school students 
in Victoria, Australia, as follows:

CAT1 is intended to enable students to demonstrate their ability to carry 
out an extended piece of independent work, define important variables, sim-
plify complex situations, formulate useful questions and interpret problems 
mathematically, seek out and use available resources, synthesize and analyse 
information, and organize, structure, and communicate mathematical ideas 
and results.

(p. 327)

Similar components were put forward by Ikeda & Stephens (1998, p. 227):

(G1) Did the students identify the key mathematical focus of the problem? 
(G2) Were relevant variables correctly identified? (G3) Did the student ideal-
ize or simplify the conditions and assumptions? (G4) Did the student identify 
a principal variable to be analyzed? (G5) Did the student successfully analyze 
the principal variable and arrive at appropriate mathematical conclusions? 
(G6) Did the student interpret mathematical conclusions in terms of the situ-
ation being modelled?

Haines et al. (2001) set out (among others) to answer the question “How are 
modelling skills improved?” (p. 367) by putting all the stages of modelling – i.e., for-
mulating model, solving mathematics, interpreting outcomes, evaluating solution, 
refining model, reporting – under a “microscope”, as they wrote (p. 368). To that 
end, they developed a test instrument focusing on students’ generating assumptions; 
clarifying questions; specifying problem statements; choosing relevant parameters, 
variables and constants; and choosing between different final models (pp. 377–379).

The first time the term “competency” was introduced into the context of math-
ematical models and modelling was in a master’s thesis at Roskilde University in 
1996 (Hansen et al., 1996), Model Competencies – Developing and Testing a Concep-
tual Framework (our translation from Danish), supervised by Morten Blomhøj. In 
this thesis, the authors decomposed what they evidently perceived as an aggregate 
mathematical model(ling) ability into a set of sub-competencies (structuring com-
petency, mathematisation competency, de-mathematisation competency, validation 
competency, strategic competency, reflection competency, critical competency and 
communication competency).

In the late 1990s, the Danish KOM project (Niss & Jensen, 2002; Niss & Højgaard, 
2011) and a number of derived or parallel projects – e.g., “Adding It Up” (Kilpat-
rick et al., 2001) and the RAND Mathematics Study Panel (2003) and, a little later, 
the German Bildungsstandards programme (Blum et al., 2006) – in different parts of 
the world placed emphasis on the active, general enactment of mathematics rather 



78 Modelling competency and modelling competencies

than solely on the knowledge of mathematics and related skills. In these projects, 
mathematical modelling is one in a set of several competencies that span the range 
of mathematical activities that students are meant to master and usually encounter 
in schools and universities. We describe one such set in some detail, such as it was 
construed in the Danish KOM project, since this project was the first one to deal 
with the question of mathematical competencies in a comprehensive manner.

In the KOM project, the focus is on the general notion of mathematical 
 competence – i.e., an individual’s capability and readiness to act appropriately and 
in a knowledge-based manner, in situations and contexts that involve actual or 
potential mathematical challenges of any kind. It went on to introduce eight math-
ematical competencies, each of which deals with situations and contexts involving 
a particular kind of mathematical challenge that are meant to jointly constitute 
mathematical competence at large. These competencies are: mathematical think-
ing competency, problem handling competency, modelling competency, reasoning 
competency, representation competency, symbolism and formalism competency, 
communication competency, and aids and tools competency. In the KOM project 
and related projects, the modelling competency is one of the key competencies 
constituting mathematical competence.

Based on Niss and Jensen (2002), and Niss and Højgaard (2011), modelling 
competency can be defined as follows: It consists of two interrelated components. 
The first component is the ability to actively construct mathematical models in  
various domains, contexts and situations, i.e., bringing mathematics into play in 
dealing with extra-mathematical matters. Active construction of models – often-
times simply called “active” modelling – further involves a number of elements 
as described in Chapter 2: pre-mathematising the extra-mathematical context and 
situation to be modelled, including specifying the questions to be answered by 
the model; mathematising the situation to construct a mathematical model with 
reference to some mathematical domain; undertaking mathematical treatments 
(including problem solving) within that domain so as to obtain mathematical con-
clusions concerning the model at issue; de-mathematising the model by translating 
the conclusions obtained back into the extra-mathematical domain and interpret-
ing them in terms of conclusions pertaining to the situation modelled; validating 
these conclusions, i.e., the answers provided by the model; and – finally –  evaluating 
the entire model.

The other component is the ability to analyse given mathematical models, con-
structed by others or by oneself, and their foundation and to critically examine and 
assess their scope and validity. This includes “de-mathematising” (features of) such 
models, i.e., de-coding and interpreting model elements and results in relation to 
the context and situation being modelled as well as to the very aim of the model.

A natural question to ask here is: “What is the relationship between model-
ling competency and the modelling cycle?” It follows from the above definition 
that modelling competency encompasses the ability to carry out the full modelling 
cycle (in any version, see section 2.3) in a wide variety of contexts and situations. 
However, it also follows that modelling competency goes beyond that ability by also 
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including the ability to understand and critically relate to, analyse and assess extant 
models.

The rapidly growing focus on modelling competency and modelling competen-
cies is reflected in several publications from the first years of the 21st century. A 
significant example can be found in the Discussion Document for the 14th ICMI 
Study, “Modelling and Applications in Mathematics Education” (Blum et al., 2003), 
in which Issue 3a reads (p. 210):

Issue 3a. How can modelling ability and modelling competency be character-
ised and how can it be developed over time?

and lists a number of specific questions, including:

Can specific subskills and subcompetencies of “modelling competency” be 
identified?

It is therefore only natural that the resulting Study Volume (Blum et al., 2007) 
contains an entire part (3.3.) titled “Modelling Competencies” (pp. 217–264). 
The same is true of the book resulting from ICTMA-12, held in London in 2005 
(Haines et al., 2007), where the section “Recognising Modelling Competencies” 
(pp. 90–175) was devoted to characterising, analysing and discussing modelling 
competency and competencies. This is also true of Part V (pp. 343–437) of the 
book coming out of ICTMA-14, held in Hamburg 2009 (Kaiser et al., 2011).

In other words, “modelling competency” and “modelling (sub-)competencies” 
seem to be here to stay, at least as far as the terminology is concerned. As Kaiser and 
Brand put it (2015, p. 135): “[I]t can be concluded that modelling competencies 
can be seen as a settled topic in the current modelling discussion, being promoted 
in various projects all over the world”. In the sections to follow, we shall say more 
about what is actually covered by these and related terms.

4.2 Modelling competency/cies: cognition and volition

It is a general issue in the discussion of mathematical competencies, including the 
modelling competency/cies, whether volitional (i.e., attitudinal, dispositional and 
affective) aspects should be included in the notion of competency or whether these 
aspects should be perceived as separate, leaving the competency notion to be defined 
as a purely cognitive one. Since a proposed definition can never be true or false, 
only more or less appropriate and useful, this is not an issue of what is correct and 
incorrect – both positions are easily defendable – but an issue of the purposes of the 
discussion as well as of terminological transparency. While everyone acknowledges 
the importance of volitional issues, the researchers associated with the KOM project 
have chosen to keep the notion of competency as a purely cognitive one and to 
consider the volitional aspects as belonging to a conceptually different category. 
In contrast, German researchers, inspired by the psychologist Weinert (2001), have 
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chosen to include volitional aspects as an integral part of the definition of math-
ematical competencies in general and of modelling competency in particular. Thus 
Kaiser (2007, p. 110) reserves the term “ability” for the purely cognitive notion 
and defines “competency” as including volitional elements: “Modelling compe-
tencies include, in contrast to modelling abilities, not only the ability but also the 
willingness to work out problems, with mathematical aspects taken from reality, 
through mathematical modelling.” This is also the point of view of the abovemen-
tioned German education standards which explicitly refer to Weinert. In this book, 
we take “competency” to have a purely cognitive meaning unless explicitly stated 
differently.

4.3  Modelling competency and modelling (sub-)
competencies

If one examines the literature on modelling competency and competencies, it soon 
becomes clear that, from a conceptual point of view, different researchers have 
adopted two rather different perspectives on and definitions of these notions.

The first definition, which we shall term the “top-down” definition, deals with 
a comprehensive, overarching entity called the modelling competency in the sin-
gular. According to this view, there exists such a distinct, recognisable and more 
or less well-defined entity. It is typically possible, as a result of a closer analysis, to 
identify major components of and other elements in this entity, but the modelling 
competency nevertheless is the primary object, whereas the major components – 
oftentimes named sub-competencies – are derived, secondary objects.

The second definition, the “bottom-up” definition, deals with a set of distinct and 
separate modelling competencies in the plural without, in the first place, seeing 
them as instances, aspects or components of a comprehensive, overarching model-
ling competency. These competencies are tightly linked to the modelling cycle.

At first glance, it may seem to be mainly a fight about words and terminol-
ogy whether we consider a comprehensive, overarching modelling competency and 
then decompose it into a set of sub-competencies (as in the top-down definition) or 
whether we take our point of departure in a set of separate, independent modelling 
competencies and – perhaps but not necessarily – subsequently aggregate these into 
a composite modelling competency, of which the initial competencies then might 
be perceived as sub-competencies (the bottom-up definition). However, there is 
much more at stake than words and terms. First, the two views and definitions 
are conceptually and empirically different. In the top-down view, the modelling 
competency is the primary complex notion which can be subjected to concep-
tual, theoretical and empirical analysis, thus giving rise to a multitude of different 
components, elements and prerequisites, depending on the perspective taken. This 
notion corresponds to an empirically well-delineated entity found in the real world: 
the ability to construct and analyse models of extra-mathematical domains and 
situations. We can say that someone possesses this competency if s/he is able to deal 
successfully with such challenges. In the bottom-up view, a set of different, separate 
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modelling competencies constitute the primary notions, each of which exists – in 
conceptual and empirical terms – independently of the other competencies under 
consideration. Someone may possess some of these competencies and not others, 
depending on his/her ability to deal with particular aspects of modelling processes. 
Only when bundled together can they give rise to an aggregate, overarching notion 
of modelling competency. The top-down definition acknowledges that there is 
more to modelling competency than the set of sub-competencies it entails. The 
bottom-up view cannot admit that the “whole is more than the sum of its parts” 
since modelling competency, if considered at all, is nothing but the definitional 
aggregation of the sub-competencies it is composed of.

This distinction has didactical and pedagogical consequences as well. The top-
down view lends itself to both a holistic (see Blomhøj & Jensen, 2003, and also 
Stillman, 1998) educational approach to the modelling process in its entirety, cor-
responding to teaching and learning activities in modelling encompassing the full 
modelling cycle, and to an atomistic approach to some of the sub-competencies, 
corresponding to teaching-learning activities concentrating on one or a few com-
ponents of the modelling process at a time. In contrast, the bottom-up view only 
lends itself to an atomistic approach to the various modelling competencies. To be 
sure, even if students are working in settings involving the full cycle, the focus on 
the individual sub-competencies remains atomistic in nature. As stated by Kaiser & 
Brand (2015, p. 138): “The overall achievement is based on the achievement within 
different sub-competencies.” It is important, however, to be aware that the distinc-
tion between the top-down and bottom-up definitions is of a conceptual nature, 
whereas the distinction between a holistic and an atomistic approach to modelling 
work is of a didactico-pedagogical nature, where the generic question is “What is 
the optimal blend of holistic and atomistic modelling work so as to foster and pro-
mote modelling competency?”

It should be noticed that the distinction between the top-down and the 
 bottom-up definitions of modelling competency, respectively competencies, has 
been uncovered by analysing the expositions in several publications. With a few 
 exceptions – e.g., Kaiser and Brand (2015, p. 139), who write “How do we describe 
and conceptualise modelling competency, as an underlying general ability or com-
posed of different sub-abilities?” – authors typically have not made this distinction, 
at least not explicitly, which suggests that they may not have noticed it. It is, how-
ever, possible that researchers who have adopted a bottom-up definition tacitly take 
it for granted that the modelling competencies they specify and consider do refer to 
an overarching yet un-named comprehensive modelling competency. Whether or 
not this is the case in each context has to be determined by undertaking a specific 
interpretative analysis of the particular context.

As is evident from the quotes above, the top-down view and definition are 
explicitly adopted by the KOM project (Niss & Jensen, 2002; Niss & Højgaard, 
2011). This is also the view adopted by Blomhøj and Jensen (2003) and by Jensen 
(2007). Kaiser-Meßmer, in her PhD dissertation (1986), seems to have taken this 
perspective as one of the first researchers in the field.
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The bottom-up definition appears to be the one chosen in an unpublished fund 
application paper by Blum and Kaiser (1997), quoted in Maaß (2006, pp. 116–117). 
The paper speaks about five sets of application competencies (in German “Anwend-
ungsfähigkeiten”), each of which was divided into several sub-competencies (without 
using that term): competencies to understand the real problem and to set up a 
model based on reality; competencies to set up a mathematical model from the 
real model; competencies to solve mathematical questions within this mathemati-
cal model; competencies to interpret mathematical results in a real situation; and 
competencies to validate the solution. Blum and Kaiser summarise this as follows: 
“Global gesehen verstehen wir unter mathematischen Anwendungsfähigkeiten die 
Fähigkeit von Lernenden, bekannte oder selbst zu entwickelnde mathematische 
Methoden zum Beschreiben, zum besseren Verstehen und zum Bewältigen von 
außermathematischen Situationen zu verwenden” (quoted in Maaß, 2004, p. 32). 
(“Globally considered, by mathematical application competencies we understand 
the learner’s ability to employ established or personally created mathematical 
methods and representations to better understand and master extra-mathematical 
situations”, our translation). This should clearly be interpreted as an aggregation of 
a broad variety of independent application (modelling) competencies into one 
over-arching application (modelling) competence.

Maaß (2006) offers a survey of parts of the conceptual development of all these 
notions. Based on the aforementioned list of modelling competencies, which she 
seems to perceive as a list of separate competencies, Maaß sets out to empirically 
look for these and other possible competencies in lower secondary students’ work 
on a series of modelling tasks, thus also adopting a bottom-up approach. She finds 
that all these competencies actually exist as significant prerequisites for successful 
modelling, but they need to be supplemented by other competencies, namely:

Metacognitive modelling competencies; Competencies to structure real world 
problems and to work with a sense of direction for a solution; Competencies 
to argue in relation to the modelling process and to write down this argu-
mentation; Competencies to see the possibilities mathematics offers for the 
solution of real world problems and to regard these possibilities as positive.

(p. 139)

One might perceive these additional competencies as aspects of one aggregate, over-
arching modelling competency, even though Maaß does not phrase her conclusion 
in this way. Instead, she states her conclusion as follows: “[M]odelling competencies 
include more competencies than just running through the steps of a modelling 
process” (p. 139). She observes that different researchers’ conceptualisations of mod-
elling competencies are intimately related to how the modelling process is being 
understood and conceptualised and hence to the representation of this process in 
terms of some version of the modelling cycle. In other words, for these researchers 
modelling competencies seem to be basically defined in terms of the modelling 
cycle.
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Kaiser and Brand (2015), after having stated in the beginning of their article 
(p. 129) that there still doesn’t exist a common understanding of modelling compe-
tencies among researchers, identified four major strands in the debate on modelling 
competencies (p. 135):

• Modelling competencies in an overall comprehensive concept of mathematical 
competencies (as in the Danish KOM Project);

• The assessment of modelling skills and the development of assessment instru-
ments (as with certain Australian and British researchers);

• The development of a comprehensive concept of modelling competencies 
based on sub-competencies (predominant among German researchers); and

• The integration of meta-cognition into modelling competencies (predominant 
among Australian and Portuguese researchers and others).

The first of these strands corresponds to the top-down view mentioned above, 
according to which the primary notion is modelling competency rather than com-
petencies, whereas the second and third strand correspond to the bottom-up view. 
The fourth strand doesn’t represent a specific stance in relation to the two views but 
is placed somewhere between them. It is interesting to note that in the concluding 
paragraph of their paper, where the authors report on an own empirical investiga-
tion into the relationship between holistic and atomistic approaches to teaching and 
learning of modelling competency, Kaiser and Brand (2015) write (p. 146) “[T]he 
study suggests that this complex construct [modelling competency] can be described 
as a global overarching modelling competency and several sub-competencies”, which 
is a way of combining the top-down and the bottom-up definitions.

4.4  Holistic and atomistic approaches to the development 
of modelling competency

Above, we touched upon the notions of holistic and atomistic approaches to model-
ling competencies. Even though Stillman (1998, pp. 244–245) speaks about a holistic 
view of the messy, complex modelling process, the distinction was first explicitly 
made by Blomhøj and Jensen (2003). It was not made to distinguish between dif-
ferent definitions of modelling competency, respectively (sub-)competencies (they 
both work from the top-down definition). Rather, it was to distinguish between 
different ways of orchestrating teaching and learning activities in order to foster 
and develop the modelling competencies in students. In the holistic approach, 
students work on the modelling process in its entirety, dealing with all relevant 
extra-mathematical and mathematical components in the same context, including 
all those represented in the modelling cycle. In the atomistic approach, students 
work to develop one or a few (sub-)competencies at a time. Blomhøj and Jensen 
(2003) mention mathematising and analysing models as examples (p. 128), typi-
cally by dealing with several tasks, each of which involves one or two stages in the 
modelling cycle only. By moving around in the modelling cycle, it is expected that 
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students accumulate experiences with and hence develop, by way of aggregation, 
the whole set of modelling (sub-)competencies.

The obvious but simplistic question then is: Which of the two approaches, the 
holistic or the atomistic one, is the more effective for students to develop modelling 
competency and (sub-)competencies? In case this question doesn’t have a defini-
tive and clear-cut answer (which it most probably doesn’t), a less simplistic, natural 
follow-up question is: What is an efficient balance between the two approaches, and 
how can it be achieved in practical terms? These are empirical didactico-pedagogical 
questions, pertaining to both research and practice.

In a research context, it is important to realise that it is not meaningful to compare 
the effectiveness of the two approaches unless there is a common conceptual basis for 
the comparison. This requires a common definition of modelling competency and 
(sub-)competencies. If the holistic approach were carried out with reference to the 
top-down definition of mathematical competency and sub-competencies, whereas 
the atomistic approach were carried out with reference to a version of the bottom-
up definition that denies the existence of a comprehensive overarching modelling 
competency, a complete comparison of the two approaches would hardly make sense 
since the criteria for success of the respective approaches would not be the same. It 
would only be possible to make a partial comparison of the two approaches consisting 
of a comparison of their respective abilities to foster and develop students’ different 
sub-competencies of the modelling competency (in the bottom-up definition). If, 
however, the version of the bottom-up definition is one which is accompanied by a 
subsequent aggregation of the separate modelling competencies into a global over-
arching modelling competency, as in Kaiser and Brand (2015, p. 146), there does exist 
a common ground for a comparison between the two approaches.

Relatively little research has been done to systematically answer the questions just 
stated. Research and research findings are the subject of Chapter 6. Suffice it here to 
say that Zöttl et al. (2011) have conducted a study which concludes that assessment 
based on the atomistic approach (which they call the analytic approach) is superior 
to assessment based on the holistic approach. Kaiser and Brand (2015), in contrast, 
report a comparative study of a “holistically taught” and an “atomistically taught” 
group of students which found that, in some respects, the holistic approach outper-
formed the atomistic one, whereas in other respects the converse was the case. This 
certainly suggests that these issues are far from being settled.

4.5 Modelling competency and other competencies

As mentioned in section 4.1, in the Danish KOM-project the modelling competency 
was one of eight competencies, cf. the so-called competency flower in Figure 4.1.

The KOM competency flower shows that each competency has a distinct iden-
tity of its own but that, nevertheless, all competencies overlap. This means that the 
activation of each competency in each context typically draws upon several other 
competencies. It depends on the context which competencies are actually drawn 
upon and how.
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Successful activation of the modelling competency usually involves, at least, the 
problem handling, representation, symbols and formalism, reasoning, and com-
munication competencies and oftentimes the aids and tools competency and the 
thinking competency as well.

Thus, with the taxi example addressed in section 2.2, the thinking competency is 
in play when the modeller considers what kinds of mathematical questions might be 
relevant in the situation. The problem handling competency is involved when the 
modeller settles on a problem-solving strategy consisting of deciding first to specify 
the parameters of the linear function at issue, then to identify the mathematical 
questions that have to be answered with regard to this function, and finally how the 
answers should be obtained. The symbols and formalism competency is significant 
in specifying the places and roles of parameters and the variables of the function 
considered and in subsequently performing the calculations needed to determine 
the relevant value of this function, whereas the representation competency does 
not need to be activated beyond the algebraic representation of the linear function, 
already included in the aspects of the symbols and formalism just mentioned. The 
aids and tools competency may be activated by someone who is unable or unwill-
ing to perform the calculations needed to find the relevant function value. The 
reasoning competency is not invoked here beyond ascertaining that the conclusion 
obtained in determining the function value is correct with respect to the computa-
tion algorithms used. A modeller who does not make the calculations to find the 
function value can only justify the answers by repeated use of technology, possibly 
through different media. Finally, the involvement of the communication compe-
tency depends on the communicative setting in which the modeller is placed. To a 

FIGURE 4.1 The KOM competency flower
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student who is showing and defending her or his work to peers or to the teacher, 
the communication competency is invoked in a rather complex manner where the 
disentanglement from one another of the real-world components, the modelling 
components and the purely mathematical components are key points.

It is worth emphasising that since the enactment and exercising of the modelling 
competency also activates and draws upon the other competencies, the modelling 
competency serves to enhance and consolidate aspects of these other competencies. 
However, it would be wrong to conclude that the modelling competence alone 
would then suffice for the other competencies to be developed and exercised, for 
not all aspects of these competencies are invoked and activated by enacting and 
exercising the modelling competency.

Conversely, it might be tempting to think that developing the other seven 
competencies would automatically give rise to the development of the modelling 
competency as well. However, this is not true because it is well known from research 
(see Chapter 6) that one can possess a high level of intra-mathematical competen-
cies without possessing the modelling competency, which in fundamental ways 
requires extra-mathematical domains be paid serious attention with mathematical 
modelling as the bridge linking these domains to mathematics.

4.6 Dimensions of possessing modelling competency

The KOM project (Niss & Jensen, 2002; Niss & Højgaard, 2011) put forward three 
dimensions of an individual’s possession of any given mathematical competency: 
degree of coverage, radius of action, and technical level.

The degree of coverage of a competency is the extent to which all the aspects 
that define and characterise it form part of the individual’s possession of the com-
petency. As to the modelling competency, the degree of coverage for an individual 
who can both construct mathematical models and analyse extant models is higher 
than the degree of coverage for an individual who is “only” able to analyse already-
given models. Also, the degree of coverage for an individual who can successfully 
manage all the stages and steps of the modelling cycle is higher than for an indi-
vidual who can only manage a proper subset of these stages and steps, e.g., the 
mathematical treatment and de-mathematisation.

The radius of action in someone’s possession of a competency is the range and 
variety of different contexts and situations in which the individual can successfully 
activate that competency. With regard to the modelling competency, an individual 
who can, e.g., activate it in contexts and situations pertaining to everyday household 
practices, including home economics, as well as in contexts and situations involving 
carpentry or growth phenomena in economics, financing and human populations, 
has a larger radius of action in his/her modelling competency than does someone 
who can only handle situations arising in everyday household practices.

The technical level of an individual’s possession of a competency denotes the 
level and degree of sophistication of the mathematical concepts, results, theories, 
methods and techniques which the individual can bring to bear when exercising 
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the competency. Thus, an individual who can, e.g., successfully handle model-
ling contexts and situations implicating linear, power, polynomial, exponential and 
trigonometric functions and their properties, as well as theoretical or empirical 
probability distributions, possesses the modelling competency at a higher technical 
level than is the case for an individual who can only successfully handle contexts 
and situations implicating linear functions and elementary descriptive statistics.

None of the three dimensions just outlined constitutes a complete ordering, let 
alone a full ranking, of the corresponding aspects of competency possession. Rather, 
the ordering of competency possession with respect to each of the dimensions is a 
partial and qualitative one. This fact becomes even more pronounced when several 
dimensions are considered at the same time. Thus, an individual’s possession of the 
modelling competency may have a high degree of coverage in everyday household 
practices, for example, with respect to managing the stages and steps of the model-
ling cycle, but a low degree of coverage in contexts and situations from science or 
technology. Similarly, another individual may possess the modelling competency at 
a large radius of action but at a low technical level.

Despite these caveats, the three dimensions serve the purpose of articulating, in 
qualitative terms, significant aspects of competency possession and variability. They 
also may serve as an analytic instrument to uncover the range and scope of what we 
might call a generic modelling competency across several mathematical domains 
and across different extra-mathematical contexts and situations. In other words, 
they can help address the question: “To what extent is modelling situated?” From an 
experiential point of view, there does exist a context-free modelling competency – 
otherwise, we wouldn’t be teaching general modelling. On the other hand, the 
liberation from contexts is not and cannot be without limits. So what are these lim-
its? This is a very pertinent research question to which we shall return in Chapter 6.

4.7 Final remarks

The exposition above shows that there is universal agreement among researchers 
in the field that the notions of modelling competency and modelling (sub-)com-
petencies are key constructs in research and practice in mathematical modelling. 
However, it also shows that there is not yet agreement on how these notions are to 
be defined. Two issues remain unsettled: First, the more general issue –  pertaining 
to mathematical competencies in general and to the modelling competency/cies 
in particular – concerns whether competencies should be defined as purely cog-
nitive constructs or whether the definitions should explicitly include volitional 
elements. The second addresses the specific issue of whether modelling compe-
tency and modelling (sub-)competencies should be given a top-down definition 
in which an overarching comprehensive modelling competency is considered the 
primary notion whereas sub-competencies are secondary, derived notions; whether 
a bottom-up definition based on a set of separate modelling competencies, perhaps 
subsequently bundled together to form a global modelling competency, is to be 
preferred; or whether a compromise between the two definitions should be made. 
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Finally, the empirical question of how the balance should be struck between holistic 
and atomistic approaches to developing modelling competency/cies in students is 
far from settled. However, any meaningful comparison between the two approaches 
presupposes a common conceptual ground to be found for the definition of model-
ling competency/cies.

One should keep in mind, however, that different viewpoints on a problématique 
can also be considered as complementary rather than antagonistic, opening avenues 
for deeper understanding of the problématique. Choosing between different defini-
tions and approaches may well be a matter of purpose, practical use or taste, but 
it remains important to avoid that conceptions which are different in essence are 
mixed up.
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5.1 Global challenges

There are many justifications for the inclusion of modelling and real-world appli-
cations into mathematics teaching, beginning in first grade, as we pointed out in 
section 2.8. The question is not if and why modelling ought to be implemented 
but how this implementation can be realised so that the aims of mathematics teach-
ing in general and the aims of dealing with modelling contexts in particular will 
be achieved. However, there are several challenges and sometimes even barriers that 
inhibit the implementation of modelling in education (see, e.g., Freudenthal, 1973; 
Pollak, 1979; De Lange, 1987; Blum & Niss, 1991; Burkhardt, 2004; Ikeda, 2007; 
Schmidt, 2009; Blum, 2015).

Before considering several more specific challenges, we call attention to three 
challenges of an overarching nature. The first challenge stems from the fact that the 
use and role of mathematics in societal, cultural, technical and scientific contexts 
and situations is largely invisible to non-experts (Niss, 1994, speaks of the “rel-
evance paradox” to indicate the fact that while mathematics is extremely relevant 
in the world, many people find it irrelevant for their own lives). In a multitude 
of cases, mathematics is hidden behind the immediately accessible surface of 
objects, constructs, artefacts and systems that rely on mathematics in crucial ways. 
Examples include: insurance premiums; determining the outcomes of parliamen-
tary voting schemes; traffic light control; tempered tuning of musical instruments; 
mathematical control theory employed by automatic pilots in aeroplanes and ships; 
error- correcting codes in the design of CDs; and predictions of the future develop-
ment of the global average temperature. To the non-expert, these examples appear 
to be something that has to do with: insurance companies; elections and election 
authorities; electrical engineering technicians; musicians and specialists in musical 
instruments; aeronautical engineers, pilots or ship captains; producers of CDs; and 
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people preoccupied with global warming – and mathematics seems to have nothing 
to do with all of this. When the place and role of mathematics in such extra-math-
ematical domains are invisible, it is a great challenge for students to see the need 
for mathematical modelling and an equally great challenge for teachers to support 
students in recognising hidden mathematics.

The second overarching challenge is the fact that while a solid knowledge and 
understanding of mathematics and general mathematical competence are necessary 
prerequisites for successfully engaging in mathematical modelling, we know from 
research (see Chapter 6) that these prerequisites are not sufficient for successful 
modelling. Students must learn modelling in large part by actually doing model-
ling, which also means that organisational frameworks, conditions and resources 
must be in place to foster and promote students’ modelling activities. This aspect 
constitutes the third global challenge, present in many places: The frameworks and 
boundary conditions for mathematics teaching and learning, such as curricula, the 
organisation of school instruction, and the modes of summative assessment, imply 
that implementing modelling into everyday classrooms requires a systemic change 
in most countries. Discussing these issues Burkhardt (2018, p. 74) writes:

In many countries education is a “hot” political issue with school system 
leadership making decisions of a technical kind that they would not con-
template in, for example, medicine. So we must recognize that politicians 
and other policy makers are part of the system and take their priorities into 
account if we are to develop models of change that actually improve teaching 
and learning . . . .

. . . [I]n countries with “high-stakes” assessment the range of perfor-
mance types that are assessed ensures that these performances are developed 
in the classroom. . . . In particular, if modelling is to happen in most class-
rooms this needs to be assessed in the tests. Yet changes to these tests are 
always a sensitive issue, with teachers understandably preferring the known 
to the unknown . . . 

Policy makers tend to attempt comprehensive reform – a new national 
curriculum, for example – which either is largely cosmetic or, if ambitious, 
places new demands on teachers and other professionals that are not matched 
with the support needed for them to meet those demands. . . . The most suc-
cessful improvement models in our experience are based on gradual change – 
an approach taken for granted in medicine, of course.

In addition to these three overarching challenges, there is a multitude of more spe-
cific challenges to the implementation of mathematical modelling referring to:

1 The competencies, beliefs, motivations and attitudes of the students (section 5.2),
2 The competencies, beliefs, motivations and attitudes of the teachers (section 5.3),
3 The norms and rules for communication and interaction in the classroom 

(section 5.4),
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4 The necessities imposed by assessment, especially summative assessment 
(section 5.5),

5 The materials available (section 5.6), and
6 The presence and role of digital tools (section 5.7).

When we mention such challenges, we certainly do not want to blame students 
or teachers for being barriers to the implementation of mathematical modelling 
in teaching and learning of mathematics. We only want to call attention to and 
discuss various relevant factors pertaining to such implementation. Most of these 
challenges have their roots in the properties and conditions characteristic of the 
education system of any given country, which itself is embedded in the culture of 
the part of the world to which the country belongs. For instance, the ways in which 
communication and interaction in the classroom take place are strongly influenced 
by cultural factors. This has obvious consequences for the possible implementation 
of modelling. For instance, as already mentioned, modelling competency can only 
be developed if learners perform modelling activities themselves, which requires an 
activity-based teaching methodology and ensuing classroom communication and 
interaction that may be in conflict with teaching, communication and interaction 
traditions that have developed over decades, if not centuries.

One consequence of such challenges and barriers is that in most countries 
around the world, there is a considerable gap between, on the one hand, the state-
of-the-art of modelling in the research and development literature and, on the other 
hand, the actual implementation of modelling in curricula, institutions, classrooms, 
lessons and summative and formative assessment schemes. We will discuss some of 
these challenges in the following sections.

5.2 Challenges on the students’ side

A look at modelling tasks (see the examples in Chapter 3) from a cognitive point 
of view clearly shows that for successfully dealing with such tasks, students have to 
possess both mathematical knowledge – which is necessary in the mathematisation 
phase as well as in the phase of working mathematically – and a fair amount of 
extra-mathematical knowledge, which is necessary when dealing with the given 
context and situation in a knowledgeable manner, especially when undertaking pre-
mathematisation, de-mathematisation, validation and evaluation (see the description 
of these processes in Chapter 2). To perform the steps in the modelling process, 
the students also have to possess certain competencies such as understanding a 
given problem situation or task (which, in addition to general language proficiency, 
involves aspects of the mathematical communication competency; see section 4.5), 
translating specific extra-mathematical concepts and relations into mathemati-
cal entities, or interpreting mathematical objects in extra-mathematical contexts 
(both of which are sub-competencies of the modelling competency; see Chapter 
4). These competencies are needed in a concretised form in relation to the given 
task, to its extra-mathematical context and to the mathematics involved, not (only) 
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in a somewhat general form (see the discussion of the range of competencies in 
section 4.6). However, this presupposes either that these competencies have already 
been acquired in similar contexts or that the students are able to transfer their 
competencies from a known context to a new context – generally a high demand  
(for more details, see the discussion in section 6.1). For such transfer to happen, 
it is significant that students possess meta-cognitive knowledge and strategies (see 
section 6.4). When dealing with modelling tasks and problems, every step in the 
process may be a barrier to students (for details, see section 6.2). Altogether, with 
the inclusion of extra-mathematical examples, cases and tasks, mathematics lessons 
become more open(-ended), more demanding and less predictable for learners. 
A focus in mathematics lessons on concepts, rules and algorithms, as is often 
encountered in ordinary classrooms, may give students more security about the 
expected demands of lessons and especially of examinations and of assessment at 
large. Teachers need to take students’ concerns about the unpredictable openness 
of modelling environments in lessons or modelling tasks in examinations seri-
ously and engage in conversations with students in attempts to justify why such 
examples and tasks are part of the agenda, and handle students’ apprehension by 
specifying the demands of the corresponding activities in a clear manner. This 
inevitably implies re-negotiating the usual didactical contract with the students 
(Brousseau, 1997; see section 5.4).

Another challenge on the students’ side comes from what Treilibs et al. (1980) 
call the “few years gap problem”. If a modelling task is included in a set of exer-
cises referring to a specific mathematical topic area, students think they know what 
is expected of them (“It must be Pythagoras!”) and don’t actually try to identify 
appropriate mathematical tools for modelling the given situation. A modelling task 
will be taken more seriously if it is not clear from the outset what mathematics can 
or should be used. Students then often tend not to use appropriate tools that are 
in fact available to them (e.g., algebra in the “filling up” task). Sometimes, they fall 
back to draw on far too elementary tools or do not attempt to tackle the task at all 
(see also section 6.2). Such behaviour may result from the fact that if a mathemati-
cal topic has been treated recently, it may not yet be sufficiently consolidated and 
cross-linked with other mathematics to be used in a modelling context. It may take 
a long time, and several experiences with such uses, before students can indepen-
dently apply the mathematics they have learned to new and open modelling tasks. 
Hence, when it comes to selecting or designing tasks for a given educational setting, 
there may be a bigger temporal distance (a “few years gap”) to the time when the 
mathematics needed for the tasks was treated in the curriculum.

In addition to possessing knowledge, competencies and strategies, students must 
be willing to deal with extra-mathematical tasks and problems. This has to do with 
their picture of mathematics as well. Can it be part of the mathematics classroom 
discourse to deal with the amortisation of loans (see example 5 in Chapter 3), or 
is this part of social science or of everyday life outside school? Can the question of 
how fast one should drive in dense traffic (see example 6 in Chapter 3) be a topic 
in a mathematics lesson, or should it only be part of the training programme in a 
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driving school? Such questions touch on the students’ picture of mathematics – does 
dealing with extra-mathematical problems really belong to “mathematics”? For 
many students, the answer is “no”. They have been socialised in school to regard 
mathematics as a collection of concepts, rules, algorithms, theorems and theories 
that have nothing to do with the world outside; hence, they see no point and no 
meaning in dealing with real-world problems in mathematics. Perhaps they have 
encountered word problems that have been conceived as a means for dressing up the 
mathematical substance in the words of some other field or discipline (see section 
2.9), which does not, however, have to be taken seriously as pertaining to the real 
world. One might expect or hope that other school subjects, say physics, geography, 
biology or the humanities, will provide examples that require mathematical model-
ling so that students may develop a more open picture of mathematics. However, 
even if such examples were provided in other subjects, which does not seem to 
happen very often, except presumably in physics, this may not influence students’ 
picture of mathematics because the examples would not necessarily be perceived as 
being mathematical in nature. Furthermore, some students enjoy dealing exclusively 
with concepts and theories inside mathematics, or they find joy or satisfaction in 
the successful performance of clearly defined algorithms, and regard aspects of the 
world outside mathematics as an inappropriate disturbance of their view of math-
ematics. It is a non-trivial and generally long-term task for the teacher to change 
these students’ picture of mathematics towards a wider view that includes real-world 
connections. According to what is known from a multi-faceted set of experiences, 
the most promising way to achieve such a change is to treat a collection of extra-
mathematical examples over a longer period and address the role of mathematics in 
these examples. Long-term studies such as Maaß (2004) have shown that it is indeed 
possible to change students’ picture of mathematics in such a way.

5.3 Challenges on the teachers’ side

What students need to be able to perform modelling activities holds even more for 
teachers. First, the teachers themselves must be able to carry out the modelling tasks 
they give to their students. This does not necessarily mean that they must have done 
so prior to task assignment, but teachers should be able to design or choose tasks 
which present challenges to their students that are suitable in terms of their back-
grounds and prerequisites. Teachers must have at least the same mathematical and 
extra-mathematical knowledge needed to manage these tasks as expected from the 
students. Similarly, they must possess at least the same competencies and appropriate 
mathematics-related beliefs as the students. Second, modelling tasks make mathemat-
ics lessons more open, more demanding and less predictable not only for learners but 
also for teachers. Written and oral assessments involving modelling become more 
complex and more difficult to judge and grade. Teachers must learn how to deal 
with such situations and demands. When treating modelling cases, teachers must be 
alert to unexpected ideas or difficulties arising on the students’ side and to be able 
to react flexibly to them. A lack of these competencies, necessary for teaching and 
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assessing modelling, is perhaps the biggest barrier for the implementation of model-
ling in everyday classrooms or, as Freudenthal (1973, p. 73) expressed it: 

Among all the arguments against teaching mathematics that is not isolated 
from applications, I can understand that of incompetence, and if it is no 
affectation, I can appreciate it. The mathematics teacher does not know how 
mathematics is applied, and we cannot blame him for this ignorance. Where 
should he have learned it? 

This “incompetence” (sometimes perhaps only a feeling of being incompetent) may 
refer to all components mentioned above: insufficient mathematical knowledge for 
dealing with certain modelling problems, insufficient extra-mathematical knowl-
edge (particularly if the extra-mathematical modelling context does not refer to 
the mathematics teacher’s other subject(s) of study), insufficient competencies for 
successfully dealing with modelling tasks, or insufficient pedagogical competencies.

Taking into account empirical results about the crucial role that teachers’ compe-
tencies, in particular the subject-related ones, have for the quality of their instruction 
and the learning of their students (see Kunter et al., 2013; Schmidt et al., 2007), it 
is important to know as much as possible about which competencies are necessary 
for teaching modelling. In the previous paragraph, we listed some of them. The 
competencies listed in Borromeo Ferri and Blum (2010) comprise a “theoretical” 
dimension (including modelling cycles), a “task” dimension (including cognitive 
task analyses), an “instructional” dimension (including interventions and support), 
and a “diagnostic” dimension (including identifying students’ difficulties); for more 
details, see section 6.6 and Borromeo Ferri (2017). All these elements must be dis-
cussed in teacher education and professional development since it is not realistic to 
expect that teachers will gain the necessary professional competencies and knowl-
edge just from teaching practice. It is desirable to uncover, by means of empirical 
studies, what teacher competencies related to modelling, as well as other teacher 
competencies, are particularly influential with respect to the quality of instruction 
and eventually to students’ learning and how strong the different effects are.

The most obvious consequence of these considerations is to include mathemati-
cal modelling and its teaching in the key phases of mathematics teacher education, 
also and especially in professional development (PD) activities for practising teach-
ers. Effective in-service education is characterised by, among other aspects, the 
following criteria (cf. Zehetmeier & Krainer, 2011; Lipowsky & Rzejak, 2012; 
Roesken-Winter et al., 2015; Maaß & Engeln, 2018): organising a series of events 
with intermediate practical experiences (in contrast to “one afternoon” events); 
linking the PD content explicitly to learning and teaching in the classroom, both 
the teachers’ own classrooms and reports or videos from other classrooms; stim-
ulating participants’ own activities in task construction, problem solving, lesson 
design, etc.; and stimulating reflections by confronting teachers’ knowledge, beliefs 
and everyday classroom actions with those presented in the PD course. There are 
empirical indications that courses which pay attention to these criteria are likely to 
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result in a change of teachers’ beliefs about modelling and a subsequent change of 
students’ perception of their teachers’ teaching (see the report of Maaß & Engeln, 
2018, about such a PD course in 12 European countries). It would be desirable to 
have well-defined and controlled studies on the effects of modelling courses for 
practising teachers on their professional knowledge, their actual teaching and their 
students’ learning.

5.4  Challenges concerning classroom interaction 
and organisation

We mentioned in section 5.2 that modelling activities make lessons more open. 
More generally, they influence the didactical contract substantially. By “didactical 
contract” (contrat didactique, see Brousseau, 1997), we understand the set of habits, 
rules and expectations that are, explicitly or implicitly but mostly in a tacit manner, 
established between students and their teacher concerning their interaction and 
division of labour. The contract may well differ from teacher to teacher and from 
classroom to classroom, and it develops during a student’s educational life. Among 
such contract rules and expectations one often finds the following (formulated 
from a student’s perspective), many of which will be in conflict with the demands 
of genuine modelling activities:

1 The teacher only gives me tasks that can be completed within at most 10 
minutes by means of the topic dealt with during the last few weeks. The task 
formulation includes questions that are clear and unambiguous, and tasks are 
always posed by the teacher.

2 The task contains exactly those data that are needed to answer the questions 
posed. It is never necessary to find additional information or data or to make 
assumptions beyond the ones stated in the presentation of the task. Similarly, 
none of the information or data provided is superfluous.

3 The tasks always have a unique answer; the teacher tells me if I am on a wrong 
track and gives me hints as to how to find this answer.

4 If the task has been set in a real-world context, it is typically unnecessary or 
even counter-productive to try to understand that context; instead, the contex-
tual disguise has to be stripped off as quickly as possible to find the mathemati-
cal problem that the teacher wants me to solve.

5 The teacher controls my solution and tells me if something is wrong.

Of course, not only the intrinsic demands of modelling tasks but the whole peda-
gogy around dealing with them in teaching and learning requires a revision of such 
rules and expectations. Let us consider the “filling up” example (see example 2 in 
Chapter 3 where the question is whether it is worthwhile driving to a distant pet-
rol station to fill up a car). In lessons involving this task, students must, first of all, 
take the context seriously and imagine and conceptualise the situation to be able 
to identify the relevant variables (in particular: distance, petrol consumption, tank 
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volume) and relations between them and to interpret what “worthwhile” could 
or should mean. They do not know in advance what kind of mathematics will be 
needed to solve the task unless they have dealt with very similar tasks before. They 
will oftentimes not only work individually but also exchange ideas with their peers 
about their assumptions concerning the parameters of the car or about their mod-
elling approaches. The students in the class are likely to produce several different 
models and answers that are compared, discussed and revised in the light of ideas 
from other students’ solutions. The students are also expected to critically check 
their solutions and revise them if need be.

For a task such as “filling up”, there will probably be sufficient time to treat the 
most basic solution (“worthwhile” means “cheaper”) within a normal lesson so 
that such tasks can be integrated in the usual organisation of a school day. How-
ever, if further parameters (such as time, risk of accidents or air pollution) are to 
be considered, a normal or double lesson will not suffice. This is even more true 
of an example such as “traffic flow” (see example 6 in Chapter 3). Students need 
time to understand the problem, to identify the relevant variables among several 
possible options and to find a reasonable and useful model. In order to find realis-
tic values for the parameters, they need data, so, in an “activity-oriented” learning 
environment, they ought to leave the classroom and observe actual traffic flows and 
record data about them, and they ought to validate their results by applying them 
in real traffic situations. Such modelling activities may easily conflict with the way 
schooling is typically organised, especially complex modelling problems. Among 
the problems of this kind are the following (see Kaiser et al., 2013): optimal capac-
ity utilisation of airplanes, radio-therapy planning for cancer patients, identification 
of fingerprints, optimal position of rescue helicopters, pricing for internet booking 
of flights, optimisation of roundabouts, risk management, optimal arrangement of 
automatic water irrigation systems, prediction of the spread of a disease, optimal 
planning of a wind park, and planning of bus lines and bus stops. Such prob-
lems require students, among other things, to do their own investigations, to make 
simulations or even practical experiments, to construct competing models and to 
evaluate them in the real world.

Another source of challenges is mathematics curricula and syllabi. They typically 
require teachers to cover a certain number of topics within a limited span of time, so 
many teachers are afraid of “losing” too much time if and when treating modelling 
examples. Also, the pressure to have enough curricular subject matter available for 
the next class test may prevent teachers from attributing a substantial role to model-
ling tasks. The curricula may well state that the aim of mathematics teaching is not 
only, or not even primarily, to cover the set mathematical topics but also to develop 
students’ conceptual understanding and mathematical competencies. However, it is 
not unusual for teachers to believe – perhaps unconsciously – that the competency 
to apply mathematics to extra-mathematical domains and to model real-world 
situations develops more or less automatically as a result of solely dealing with math-
ematical concepts, facts and procedures – which, as mentioned in the beginning of 
this chapter, unfortunately is not true (see section 5.1). Once again, the only way 
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to develop students’ modelling competency is to involve them in modelling activi-
ties while taking into account significant criteria for quality teaching: an effective 
and learner-oriented classroom management; cognitive as well as meta-cognitive 
activation of learners; and a reflectively designed, challenging orchestration of the  
subject matter (for details see section 6.4). A productive syllabus leaves enough 
room for the development of mathematical competencies in close connection with 
mathematical knowledge and skills.

The inclusion of modelling and applications activities in mathematics teaching 
may take several forms. Blum and Niss (1991) distinguish between six types of 
approaches to such inclusion:

1 The “separation” approach where modelling activities take place in separate 
sections or courses and mathematics lessons are restricted to intra-mathematical 
activities;

2 The “two-compartment” approach where the whole course (say half a school 
year) is divided into two parts: the first part deals with pure mathematics and 
the second part uses the mathematics developed to treat models and modelling 
examples;

3 The “islands” approach where the whole course is divided into several seg-
ments, each organised according to the two-compartment approach;

4 The “mixing” approach where every time a new mathematical topic area 
is treated, extra-mathematical examples are used to assist the introduction 
and consolidation of the topics which are then, afterwards, applied to extra-
mathematical situations;

5 The “curriculum integrated” approach where problems, also (but not only) 
from the real world, are employed to develop new mathematics (new to the 
students, of course), which is afterwards used to solve further problems, also 
from extra-mathematical domains; and

6 The “interdisciplinary integrated” approach where mathematics and extra-
mathematical problems are integrated throughout the course.

In a usual school environment, genuinely integrated approaches are not often found. 
However, more important than the course organisation is the way the teaching and 
learning takes place. Within all the forms listed, successful teaching pays attention 
to the abovementioned well-founded criteria of quality teaching.

5.5 Challenges imposed by assessment

It is important to include modelling not only in instruction but also in achieve-
ment or diagnostic tests and in examinations (summative assessment) as well as in all 
kinds of feedback that teachers give to their students during teaching/learning pro-
cesses (formative assessment). It is a general observation, also experienced by many 
teachers, that in an assessment-based system, only those demands which are assessed 
are taken seriously by the students, whether in classwork and/or in summative 
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assessment, including final examinations – “What you assess is what you get!” 
(Burkhardt et al., 1990; Niss, 1993). It is certainly true that not everything that is 
taught can or should be assessed; on the other hand, it is not surprising that learners 
tend to reduce their learning load by concentrating mainly or exclusively on those 
topics and activities that actually are assessed.

The challenges raised by the very presence of summative or formative assessment 
with regard to applications and modelling are important enough, but the aspects 
that are not actually being assessed are equally important because they signal to 
students what they should emphasise, or let go unnoticed, in their modelling work.

This gives rise to the question of how modelling can be made an object of 
assessment, in particular tests and examinations (see Niss, 1993, for a conceptual 
framework). Since assessment oftentimes focuses on the individual, an assessment 
task must be formulated so students can understand it without support from others, 
can work on it individually and can complete it within a reasonable time frame. 
The last-mentioned criterion, in particular, can create substantial restrictions since 
genuine full-fledged modelling work usually requires quite some time, for instance, 
when information has to be sought, data have to be collected or experiments have 
to be conducted. That modelling can indeed be assessed has been shown in many 
studies during the last three decades. We mention here in particular the work of 
a British-Australian group, see Haines and Izard (1995), Haines et al. (2001), and 
Houston and Neill (2003), which has influenced the discussion on assessment 
of mathematical modelling since the 1990s (for more details, see the surveys by 
Frejd, 2013; Kaiser, 2017; also see section 6.8). The relevance of and the possible 
approaches to formative assessment of modelling have been emphasized by Eames 
et al. (2016). An example of formative assessment is the “Matchstick” problem 
(Figure 5.1) developed in the Shell Centre for Mathematical Education for the 
Mathematics Assessment Project (map.mathshell.com, see Swan & Burkhardt, 2014, 
for more details; see also section 7.6 for more examples from the Shell Centre).

The students are meant to work on this problem independently. The teacher 
is supplied with a list of possible challenges and difficulties to students. S/he col-
lects students’ work, makes an overall assessment of it (without scoring it) and gives 
qualitative feedback. In the following phase, the students discuss their work in small 
groups, prepare group solutions, compare their solutions with those of other groups 
and improve them once again. In the end, the group solutions are presented to the 
whole class, and the solution process is collectively reflected upon in retrospect.

An additional challenge is how students’ completion of modelling tasks can be 
marked. This is different from marking intra-mathematical tasks where there are 
usually clear criteria of what counts as right or wrong, good or bad. A generic 
approach to marking students’ responses to modelling tasks (see Leiß & Müller, 
2008, for a concrete suggestion) is to identify the key elements of an ideal-typical 
modelling process providing answers to the task. We can, for instance, use the cog-
nitive modelling cycle shown in section 2.5, sort a given student’s modelling steps 
according to this cycle and assess every single step. Let us imagine that the task 
“Uwe Seeler’s foot” (example 1 in Chapter 3) is given in a written test, where the 

http://map.mathshell.com
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students are asked to find the possible height of a statue of the German soccer player 
Uwe Seeler on the basis of the measures of a sculpture of his foot. When marking 
a student’s written response, the teacher may try to identify the following elements:

1 “Understanding the situation”: Are there indications that the issue of finding 
the height of a person based on his foot length has been understood?

2 “Simplifying and structuring the situation”: Are the simplifications made by the 
student(s) appropriate; have the relevant variables and relations been identified; 
are the assumptions reasonable; is a sketch of the situation part of the response?

3 “Mathematising”: Have the variables and relations been appropriately trans-
lated into an equation or a relation using proportions and scaling factors?

4 “Working mathematically”: Are the mathematical calculations and consider-
ations correct, and do they lead to an answer specifying a length?

5 “Interpreting”: Has the mathematical result been correctly interpreted as the 
unknown height of the statue accompanied by a meaningful unit; is the value 
appropriately rounded; and is there a final answer?

6 “Validating and evaluating”: Are there indications that the result has been vali-
dated and the model evaluated?

7 “Exposing”: Are the solution process and its result coherently presented and 
clearly structured?

FIGURE 5.1 The Matchstick problem for formative assessment
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The first and the last step in the process, “Understanding” and “Validating and 
evaluating”, are difficult to identify in a written report of the completed work since 
these steps often take place in the head of the modeller only. In oral assessments, 
these steps can be judged as well by inviting the respondent to explain how s/he 
approached the situation and how s/he checked the outcomes.

Some teachers might prefer to use points for single elements of the modelling 
work and add them at the end. However, more important than assigning and add-
ing up points is identifying strengths and weaknesses of the work presented and 
giving appropriate feedback. Points might even distract students’ attention from 
the feedback (see Black & Wiliam, 1998). Besser et al. (2013) suggest to give feed-
back in three parts: (1) strength (“You are already quite good at dealing with the 
following . . .”); (2) weaknesses (“You can still improve in dealing with the follow-
ing, if you pay attention to my hints . . .”); and (3) hints (“Hints on how you can 
improve . . .”). This kind of feedback is corroborated by the results of empirical 
findings on effective feedback (see Hattie &Timperley, 2007).

It ought to be mentioned that providing high-quality assessment and feedback to 
students on their modelling work is demanding and time consuming. Here the idea 
of peer assessment may contribute to disburdening teachers (Black &Wiliam, 1998) 
and at the same time give students more responsibility for their work. In any case, 
it is a challenge for the education system to provide legislative and working condi-
tions and resources for teachers to allow them to undertake such work. And it is a 
challenge for teachers to navigate within the boundary conditions they are under 
and find ways to provide quality assessment and feedback both to their students and 
to the system.

5.6 Challenges in finding suitable materials

One explanation of the absence of modelling in everyday classrooms often put for-
ward is the lack of appropriate teaching materials. This explanation no longer seems 
valid considering the multitude of existing materials. In the last three decades, a 
plethora of valuable and feasible teaching materials (books, collections of examples, 
reports on experiences) have been published in many countries, including Australia, 
Denmark, Germany, Japan, the UK, and the USA. In the following section, we will 
refer to some of these materials.

Many examples of modelling tasks and learning environments for modelling can 
be found in the series of Proceedings of the ICTMA conferences. Under www.
ictma.net/literature.html, all ICTMA books are listed. The organisation COMAP 
(the Consortium for Mathematics and its Applications, also see section 7.4) has 
produced, in the last four decades, materials containing modelling examples; see 
www.comap.com. We mention here the book For All Practical Purposes (the last 
edition of which is COMAP, 2013) and the GAIMME Report, produced in collab-
oration with SIAM (COMAP, 2016). The GAIMME Report contains a wide range 
of modelling examples from elementary to upper secondary level and from word 
problems to modelling projects; several examples are accompanied by detailed hints 

http://www.ictma.net
http://www.ictma.net
http://www.comap.com
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concerning how these examples can be used in the classroom. Since 1999, COMAP 
has organised two annual international modelling competitions for teams of college 
students, the Mathematical Contest in Modeling (MCM) and the Interdisciplinary 
Contest in Modeling (ICM). The modelling problems as well as possible solutions 
are available at www.comap.com/undergraduate/contest. Since 2015, COMAP, in 
cooperation with NeoUnion, has also organised an international modelling con-
test for teams of upper secondary school students, the International Mathematical 
Modeling Challenge (IM2C). The modelling problems and possible solutions are 
available at www.immchallenge.org. The Australian branch of this contest has 
established its own website (www.immchallenge.org.au), which also contains the 
book by Galbraith and Holton (2018); also see section 7.3.

The Shell Centre for Mathematical Education at Nottingham University (also 
see section 7.4) has developed, over the last five decades, a multitude of modelling 
materials for the lower secondary level (for an overview, see Burkhardt, 2018). These 
materials comprise modules for modelling projects where students are expected to 
work in groups for several hours, developed by Malcolm Swan and others in the 
Numeracy Through Problem Solving project: “Design a board game”, “Produce a 
quiz show”, “Plan a trip”, “Be a paper engineer”, and “Be a shrewd chooser”. In 
the Bowland Mathematics project (see www.bowlandmaths.org.uk), the Shell team 
developed modelling units expected to take four to five hours, such as “Reducing 
road accidents” and “How risky is life”. In the Mathematics Assessment project, a 
collaboration between the Shell Centre and the University of California at Berke-
ley, the modelling lesson materials supported formative assessment for learning (see 
www.map.mathshell.org/lessons.php and also cf. section 5.5).

Another rich source of modelling examples is the collection of modelling activi-
ties developed by Lesh and his group within the framework of the “models and 
modelling perspective on teaching, learning, and problem solving” (see Lesh & 
Doerr, 2003, and section 6.9). Although primarily developed as a research tool, the 
model development sequences of this project can also be used for classrooms rang-
ing from primary to upper secondary school levels, as well as for teacher education. 
A typical sequence consists of three parts: a “Model Eliciting Activity” (MEA, see 
section 2.7), followed by a “Model Exploration Activity” (MXA), and finally a 
“Model Application Activity” (MAA). Teaching methods for MEAs are described 
in detail in Moore et al. (2018); for more information on the design principles for 
these activities, see Brady et al. (2018).

Especially for the German speaking world, the series of books Materialien für 
einen realitätsbezogenen Mathematikunterricht (Materials for Reality-Oriented Math-
ematics Teaching), edited by the so-called German Istron group, presents a wealth 
of tried and tested modelling examples for all school grades, with an emphasis 
on the lower secondary level. Since 1993, 24 volumes have been published (see 
www.istron.mathematik.uni-wuerzburg.de/istron/index.html@p=1033.html for 
an overview). Particularly interesting is a recent volume (Siller et al., 2018), which 
is a “best of ” collection from all previous Istron books (for details of the group and 
especially the “best of ” volume, see section 7.4).

http://www.comap.com
http://www.immchallenge.org
http://www.immchallenge.org.au
http://www.bowlandmaths.org.uk
http://www.map.mathshell.org
http://www.istron.mathematik.uni-wuerzburg.de
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However, one issue is the availability of resource materials that teachers can find 
if they search for it. Another issue is the presence or absence of sections and tasks on 
modelling in prevalent textbooks. In this respect, the situation is very diverse within 
and across countries. Since it is well known from research that textbooks consti-
tute the predominant teaching materials upon which teachers base their teaching, 
it is evident that textbooks without suitable modelling sections and tasks generate 
marked challenges to the implementation of modelling work in everyday teaching.

Another challenge is rooted in the fact that the modelling examples, tasks, units 
and materials found in different types of literature display a wide range of content 
and quality. If a teacher looks for modelling material suitable for a certain lesson 
or teaching unit, it may be difficult to find something that is appropriate with 
respect to the mathematical topics and the extra-mathematical contexts involved 
(if it is desirable at all to match curricular topics and modelling topics closely, see  
section 5.2). The contexts and the problems considered therein may range from 
purely dressed-up to authentic. Burkhardt (1981) classifies modelling problems as 
Action, Believable, Curious, Dubious and Educational. The notion of an “authen-
tic problem” may have several different meanings (see Palm, 2002). The strictest 
meaning is that the context and the problem to be dealt with come directly from a 
genuine field of practice in industry, business, science, society or everyday life. There 
are certainly examples for all levels that satisfy this demand (see Kaiser et al., 2013). 
However, this demand is often too strict for educational purposes since authentic 
problems tend to go beyond the reach of school mathematics either in terms of the 
mathematics involved (be it differential or difference equations, functions of several 
variables or advanced probability distributions or stochastic processes, or discrete 
mathematics) or in terms of the knowledge needed from other fields (such as phys-
ics, biology, engineering or economics). A less strict notion of authenticity (see 
Niss, 1992; Palm, 2002, 2007; Vos, 2011, 2015) requires the contexts and problems 
to be constructed in such a way that they might occur in real practice and people 
from the practice area find them credible, albeit simplified. Crucial notions here 
are honesty and credibility (Carreira & Baioa, 2018), that is, the teacher ought to 
make it clear to the students in what respects a context or problem is not authentic 
in the strict sense but that it deserves to be taken seriously nevertheless. According 
to Vos (2018), criteria for authenticity in an educational context are: an out-of-
school origin and a certification of originality (by suitable artefacts or by expert 
testimony). However, inauthentic contexts may in fact be suitable for educational  
purposes, depending on the teaching and learning goals (see section 2.7). For 
instance, when motivating the study or practise of certain mathematical topics 
is the primary aim, dressed-up problems might very well be appropriate, and the 
same holds when specific sub-competencies of modelling are to be practised or 
drilled. The question of how close a task context is to reality also has a subjective 
aspect. Students might hold a rather narrow view of authenticity, oriented towards 
their own personal life, and at the same time be more generous about the demand 
for authenticity since they know that instruction has multiple purposes and school 
is different from real life.
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The more general question behind these considerations about the authenticity 
of tasks is what a “good” modelling task should look like. As has been said, this 
depends strongly on the goals the teacher wants to pursue by a given task. However, 
there are certain criteria that can be applied to judge whether a given task is suitable 
for the intended purposes. These criteria comprise, among others, the following 
(see Maaß, 2010; Borromeo Ferri, 2017):

1 Degree of precision or openness of the task question: Does the formulation of 
the question itself suggest a solution approach, or does a more precise question 
have to be developed during the solution process?

2 The kind of information given: Does the task contain more or less information 
than is necessary for dealing with it?

3 Complexity of the question: Is an approach immediately recognisable, and will 
one loop in the modelling cycle be sufficient to arrive at a satisfactory solution, 
or are different approaches, or several loops, likely to be necessary?

4 The kind of real-world context: Is the context accessible and understandable by 
the students dealing with the task? Is the context credible, and is it relevant for 
students’ lives?

5 Extent and level of the mathematical content: What kind of mathematics is 
suitable or necessary for solving the task? Is this mathematics accessible to the 
students?

5.7 Challenges concerning digital tools

The existence of digital tools (such as calculators, computers, tablets or smart-
phones) with powerful software can be a vehicle for enhancing and improving the 
treatment of modelling tasks. As an example, let us consider the modelling task 
“traffic flow” (see example 6 in Chapter 3). As soon as the situation is understood 
and the relevant variables – speed v, car length l and distance between cars, d – have 
been identified, computations of the flow rate F can be carried out with multiple 
varying speeds, car lengths and distance rules before the general model F = v/(l + d) 
is developed. The real-world knowledge necessary for assigning concrete values or 
rules to the variables (car lengths, distance) can be extracted from the internet. It 
might also be helpful to simulate the real situation dynamically using various values 
of the variables. Once the general model has been established, a digital tool can 
be used to explore, both numerically and graphically, different functions Fi = fi(v), 
depending on the chosen distance rules, for various car lengths. The maxima of Fi 
for quadratic distance rules can be determined with the help of a Computer Alge-
bra System (CAS) tool, both numerically and symbolically. When comparing and 
evaluating different models, calculations and visualisations will help form an image 
of what is going on.

This example suggests that digital tools can indeed be used as powerful aids for 
modelling activities, in all phases of the modelling process, not only in the intra-
mathematical treatment phase (see, e.g., Drijvers, 2003; Borba & Villarreal, 2005; 
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Henn, 2007; Confrey & Malony, 2007; Geiger, 2011; Greefrath et al., 2011; Daher & 
Shahbari, 2015; Greefrath & Siller, 2017; Greefrath et al., 2018). Relevant activities 
include experiments, investigations, simulations, visualisations and calculations. In 
order to visualise the use of digital tools in the intra-mathematical phase of the 
modelling cycle, Greefrath (2011) suggests extending the cycle by adding a third 
world beside the extra-mathematical and the mathematical worlds: the technologi-
cal world (Figure 5.2).

A special feature of a many digital tools is the availability of statistical packages, 
which are of particular relevance to mathematical modelling. These tools typically 
allow for parameter estimation, hypothesis testing and – especially – regression analy-
sis, which are significant aspects of modelling involving real data, aspects which usually 
are very time consuming if they have to be dealt with manually by the modeller. In 
addition, ordinary spreadsheets can handle most kinds of data very effectively.

There are many empirical studies which show that digital tools can actually 
enhance the acquisition of competencies in modelling environments; see Greefrath 
et al. (2018) both for an overview and for a quantitative study where the experi-
mental group used a dynamic geometry software (DGS). In this study, the control 
group, which only used paper and pencil, had modelling competency gains compa-
rable to those of the experimental group. One reason might be that the test tasks in 
this study could be solved without DGS, whereas an advantage of the use of DGS 
will only be visible with tasks where DGS allows for new approaches. Other studies 
where DGS was successfully used to support modelling processes include Carreira 
et al. (2013) and Gallegos and Rivera (2015).

The existence of digital tools produces not only new opportunities but also new 
challenges to the implementation of modelling in mathematics classrooms. Students 
might, for instance, tend to use such a tool in the “traffic flow” example rather 
extensively for a multitude of calculations (flow rate for several speeds and a popular 

FIGURE 5.2 The extended modelling cycle

Source: Greefrath, 2011, p. 302
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distance rule) and might get lost in data instead of carefully analysing the situation 
without digital support (What happens if the distance increases linearly with the 
speed? What if it increases quadratically? What is the flow rate for very small speeds, 
and what is it for very large speeds in these two cases?). How will the understand-
ing of a functional relationship between variables, as in the “traffic flow” example, 
be influenced by an early global visualisation of the underlying function on a huge 
domain? Such a global visualisation presupposes the idea of a function as an object, 
which may not be appropriated by lower secondary students.

What knowledge and competencies are necessary if a digital tool can do all 
numerical, algebraic and analytical calculations; all graphical representations; and, 
if appropriate, simulations much more effectively than human problem solvers? 
To interpret the digital output appropriately, understanding and familiarity with 
those calculations, visualisations and simulations are necessary; otherwise, the tools 
might lead to unsuitable results which the user may uncritically accept. Some clas-
sical manipulative proficiencies are certainly becoming less important. On the other 
hand, the basic skills associated with a given tool will have to be acquired before 
the tool can be used appropriately, as is the case with any device: The device itself 
produces new demands for learning. The availability of tools which can easily do 
numerical or algebraic calculations and which can supply any kind of functions 
for modelling given data might lead to an inappropriate emphasis on quantitative 
approaches, neglecting qualitative relationships and especially reflections on which 
approaches make sense in the context of the given problem situation. Teachers must 
carefully consider the advantages and disadvantages of the use of digital tools in 
modelling work and determine when and how they should – or should not – use 
such tools.
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In this chapter, we will summarise important findings on the learning and teaching 
of mathematical modelling, with an emphasis on empirical research. However, since 
empirical research does not exist in a vacuum but depends on conceptual, analyti-
cal and theoretical ideas, notions and approaches, some of the material presented in 
this chapter goes beyond empirical findings to also encompass, for example, a priori 
considerations and hypothetical explanations of empirical observations.

In view of the existing body of literature on such findings, it is impossible to be 
exhaustive in reviewing the empirical research in the field. Therefore, this chapter 
represents a selection of findings. The selection has been guided by our wish to shed 
light on the barriers to the learning of modelling and on ways to overcome these 
barriers. Most of the empirical studies mentioned in this chapter are either qualitative 
small-scale studies or medium-sized (up to a few hundred subjects) qualitative-
quantitative studies. However, reference will also be made to quantitative large-scale 
studies, although there are not many that have modelling as their primary focus. 
Since empirical research on the teaching and learning of mathematics is unequally 
distributed across countries, research from some countries will figure more promi-
nently than that of others (thus, in the literature review by Stohlmann et al., 2016, 
most research contributions came from Germany). Moreover, the backgrounds of 
the authors have, of course, influenced the selection of findings reported here. Other 
authors have previously attempted to survey the current state of empirical research in 
mathematical modelling. Examples include Stillman (2015, 2019), Kaiser (2017), and 
Schukajlow, Kaiser and Stillman (2018), which in addition to being a survey paper 
in itself is also an introduction to a special ZDM issue (no. 50, 2018) on this topic.

Knowledge about such findings will be helpful for teachers so they can best 
help students develop the desired knowledge and competencies. All findings have 
been obtained in certain organisational, societal and cultural environments, and in 
each case it must be considered to what extent these findings can be generalised to  
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other environments (see Burkhardt & Schoenfeld, 2003, for such methodological 
questions). This is a particular instance of a phenomenon which is certainly among 
the most important general issues and aspects of human learning, which we will 
discuss in the first section of this chapter: situatedness of cognition and transfer of 
learning.

6.1 Situated cognition and the issue of transfer

The very reason that we have general school education in all countries is that we 
believe in and have evidence of the possibility of learning certain things in one con-
text and situation and then transferring the learning outcomes to make sense and 
be relevant in other contexts and situations. Were it only possible to employ what 
has been learned in circumstances that are exactly the same as the original ones, we 
would only have context- and situation-specific atomistic drills and rehearsed prac-
tice, not education in a more general sense. There is certainly nothing wrong with 
very focused and specific drills and rehearsed practice. On the contrary, this is essential 
in many vocations, occupations and professions. For a chef to learn to make a soufflé 
au Grand Marnier to perfection, for a mason to build a brick wall accurately accord-
ing to specifications, for a pilot to competently fly an aeroplane of type X, and for an 
orthopaedic surgeon to successfully replace a hip in every patient he or she receives for 
such an operation, a huge number of hours of strongly focused and careful drills and 
practice are needed for satisfactory results to be guaranteed every time. Only then can 
the chef, the mason, the pilot or the surgeon consider gradually transferring the skills 
they have obtained to new situations (to, say, a soufflé au chocolat, a free standing brick 
arch, an aeroplane of type Y, or a knee) that deviate more or less from the original one. 
But even in such rigidly defined contexts, transfer to close but unrehearsed territory 
will, most probably, not be automatic and will give rise to challenges.

So, the key issues for education are: To what extent is learning situated and 
dependent on the context and situation in which it first took place? What are 
the conditions and characteristics of such situatedness, and how does this depend 
on the nature and substance of what has been learnt and on the learner? To what 
extent is the transfer of what has been learnt under one set of circumstances to be 
applicable in new sets of circumstances possible? What are necessary or sufficient 
conditions for such a transfer to take place? And how can education systems, institu-
tions, researchers and teachers, among others, foster and further transfer?

Although the authors cannot provide an in-depth account of all these aspects 
and issues, research evidence suggests that learning in general, and cognition in par-
ticular, is more situated (see, e.g., Brown et al., 1989) and that transfer is much less 
automatic and more difficult to obtain than one might originally think.

For “situated cognition” and “transfer” specifically in mathematics (see Watson, 
1998), every topic of learning carries with it “indices” referring to its specific learn-
ing context, where “context” is to be understood in a broad sense, including the 
specific learning environment, the specific mathematical topic and the specific intra- or 
extra-mathematical problem context. Here, too, independent and automatic transfer  
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from one context to another cannot be expected. Human brains seem to store learn-
ing results in specific compartments without automatically linking these with other 
compartments and without automatically recognising existing structural similarities 
between different compartments. This is particularly relevant for any learning in 
the field of relations between the extra-mathematical world and mathematics. For 
empirical results about “modelling competency” (see Chapter 4 for this construct), 
we must equip this construct with several indices, especially referring to the math-
ematical topics and the extra-mathematical contexts involved. One may ask: What 
can “modelling competency” possibly mean if it is dependent on the learning 
context? Should we speak of several specific “modelling competencies”, indexed by 
specific mathematical topics and extra-mathematical contexts?

Three issues are essential here. The first is: To what extent are competencies 
and knowledge, gained solely by working in intra-mathematical contexts, suffi-
cient for successfully undertaking mathematical modelling? Or differently put, to 
what extent can intra-mathematical competencies and knowledge automatically 
be transferred to becoming modelling competencies and knowledge? The second 
is: To what extent is it possible to transfer modelling competencies and knowledge 
gained in one modelling context and situation to other modelling contexts and 
situations, and how does this depend on the characteristics of the contexts and 
situations at issue, including the “distance” from the initial to the new contexts 
and situations? The third issue is: To what extent is it possible to design teaching 
and learning activities that efficiently support transfer between modelling con-
texts and situations? Clearly, it is not possible to provide exhaustive and detailed 
answers concerning these issues within a single book chapter. In what follows, 
some of the answers are of a sketchier nature than others.

Concerning the first of these questions, it is sometimes said that it is not only 
necessary but also sufficient to have a broad knowledge and a deep insight concern-
ing pure mathematics to be able to apply this knowledge in extra-mathematical 
situations, in other words to perform modelling activities. Consequently, it should 
not be necessary to devote special time and energy to modelling activities in the 
mathematics classroom. However, many empirical investigations have shown 
(see the surveys by DeCorte et al., 1996; Niss, 1999) that it is very difficult to 
transfer knowledge and skills from one context or task to a different context or 
task and that such transfer actually does not happen automatically but has to be 
deliberately catered to and organised. This implies that it cannot be expected that 
intra-mathematical knowledge acquired by someone can be successfully employed 
in extra-mathematical problem contexts without focused practising. In fact, several 
studies (e.g., Plath & Leiß, 2018) have found only a weak or no correlation between 
school marks in mathematics and modelling achievement; in many places, school 
marks are mostly given according to intra-mathematical skills and abilities. The 
results of OECD’s so-called PISA studies (PISA stands for Programme for Interna-
tional Student Assessment and every three years tests the ability of 15-year-olds to 
solve contextual tasks by means of school mathematics; for the latest PISA results, 
see OECD, 2016, 2019) supply many examples of the difficulty of transfer from pure 
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mathematical knowledge and skills to extra-mathematical contexts for all par-
ticipating countries. As an example, in the task “Revolving door 1” (Figure 6.1; 
see OECD, 2013), students’ knowledge about angles must be applied to a specific 
real-world situation described by a text (which also contains some information 
not needed for this first question) and three diagrams. Most participating students 
(15-year-olds) will know that a full circle is an angle of 360°, and they will also 
be able to divide 360 by 3. However, only 57.7% of the students in OECD coun-
tries could solve this task, that is, apply their well-established knowledge to this 
situation.

The difficulty of transfer (cf. the second issue) also appears when mathematical 
knowledge and modelling work that has been applied in a certain problem con-
text is to be applied in a different context (Stillman, 1998, 2000). Even a relatively 
close transfer between structurally similar problems cannot be expected from students 
without support. For instance, students in a ninth class in Germany (in the framework 
of the DISUM project; see Blum & Leiß, 2007) had dealt with the “filling up” task 
(see example 2 in Chapter 3) and, supported by the teacher, successfully developed the 
basic solution. In a subsequent test, the students had to solve two structurally similar 
tasks: deciding whether it is worthwhile to drive to a nearby strawberry field to pick 
the berries for a cake instead of buying them in a nearby supermarket and whether 
it is worthwhile to use cloth diapers instead of disposable ones, which, in addition to 
the purchase costs, also generate washing costs. For many students, these tasks were 

FIGURE 6.1 PISA Item “Revolving door 1”
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totally new challenges, now about strawberries and diapers instead of cars, and con-
sequently they had the very same problems as when they first began dealing with 
the “filling up” task. Such a structural similarity between tasks only becomes visible 
once the underlying common real or mathematical model has been constructed and 
students are made conscious of this commonality. We can expect more experienced 
modellers to see such similarities immediately because they are able to construct the 
underlying common model right away.

What we also know from research on situated cognition (see, e.g., Anderson 
et al., 1996) is that there is a chance for transfer if this transfer is explicitly organised 
and made conscious to students on a meta-level. For the “filling up” example and its 
related tasks, this means that to enable students to solve structurally similar tasks like 
the two test tasks mentioned above, this structural similarity has to be made explicit 
for the students by means of examples given by the teacher or even constructed by 
the students themselves. For instance, it can be shown why the problem of deciding 
whether it is worthwhile to drive to a distant beverage store in order to buy min-
eral water because it is cheaper there than in a nearby shop is “the same” problem 
as that of deciding whether it is worth driving to Luxembourg to fill up a car or 
whether it is worth using cloth diapers instead of disposable diapers; teachers can 
also demonstrate that the common mathematical modelling core of all these prob-
lems is to compare the values of a proportional and a linear function, even though 
the parameters and the variables involved stand for completely different things in 
the three different contexts. This could be done, for example, by writing down the 
solutions of the various problems in parallel and showing explicitly which variables, 
parameters and relations correspond to one another. This still does not guarantee 
transfer, which also depends on individual prerequisites and experiences, but at least 
it becomes more likely to occur if such measures are taken.

6.2 Barriers in the process of dealing with modelling tasks

Significant barriers are found in the processes involved in dealing with modelling tasks 
(compare the examples in Chapter 3). An analysis of these processes reveals that there 
are many possibilities for students to get stuck or to make mistakes when dealing with 
such tasks in the classroom or on examinations and tests. The first hurdle may already 
occur when students are invited to engage in a modelling task. This hurdle was found, 
for instance, in a study of prospective teachers who – in their capacity as learners – were 
reluctant to undertake mathematical modelling to deal with real-life problems concern-
ing travelling in Greece (Potari, 1993). Jankvist and Niss (2019) found in a study of 315 
upper secondary school students in Denmark that several students decline engagement 
in modelling tasks – either because they don’t accept the task as being part of mathemat-
ics or because they have no idea of how to get started.

Mathematical modelling is a cognitively demanding activity (see Chapters 2 
and 4) since several competencies must be activated along the road and both math-
ematical and extra-mathematical knowledge is required, as are appropriate beliefs 
and attitudes. Every step of the modelling process is a potential source of difficulty 
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for students, and empirical research shows that every step can indeed be a barrier 
or blockage for some students (e.g., Ikeda & Stephens, 1998; Galbraith & Stillman, 
2006; Stillman et al., 2010; Ludwig & Xu, 2010; Stillman, 2011; Blum, 2011; Schaap 
et al., 2011; Schukajlow et al., 2012).

In the following, we orient ourselves towards the “cognitive modelling cycle” 
presented in Figure 2.8, which describes, in an ideal-typical way, the steps that 
are involved when carrying out modelling tasks, and we will discuss every step 
separately. We presuppose that there is a task given to students consisting of an 
extra-mathematical situation together with certain questions. This task may have 
been set by the teacher or, after exploring some context, by the students themselves.

The first step that students must undertake when dealing with the task is  
“understanding the given situation and constructing a mental model of it”. One 
factor influencing the way in which, and also how successfully, this can be done is 
the real-world context in which the situation is embedded (for different meanings 
of the word “context” in modelling, see Brown, 2019). Busse (2011) showed in a 
qualitative empirical study with 16- and 17-year-olds how idiosyncratically these 
students interpret the real-world context, depending on their previous personal 
experiences, and that familiarity with a context may sometimes even be obstruc-
tive because it may lead to representations and interpretations that are not helpful 
(see also Boaler, 1993). Several empirical studies have shown a big influence of an 
appropriate situation model (see Figure 2.8) on the solution rate of modelling tasks 
(see, e.g., Leiss et al., 2010). An important factor influencing the comprehension of a 
given task is students’ language proficiency (as shown, e.g., by Plath & Leiß, 2018, in 
a study with seventh and eighth graders). Hence, this first step can be a big hurdle, 
and many students get stuck here. This fact does not only, or perhaps not even pri-
marily, have cognitive roots. Many students around the world have learned, as part 
of the hidden school mathematics curriculum, that they may easily survive in math-
ematics without the effort of careful reading and understanding given mathematical 
tasks cast in an extra-mathematical context. It is part of their picture of mathematics 
that in this subject you don’t have to care about meaning but just about tackling 
tasks by applying a recently learnt method and that a typical task contains exactly 
the information that is needed for finding the uniquely determined answer to it, 
neither more nor less. In the case of contextual problems, such students follow a 
“substitute strategy”: “Ignore the context, just extract all data from the text and 
calculate something according to a familiar schema” (see, e.g., Nesher, 1980; Baruk, 
1985; Schoenfeld, 1991; Lave, 1992; Reusser & Stebler, 1997; Verschaffel et al., 2000; 
Xin et al., 2007; Verschaffel et al., 2010). Schoenfeld and Verschaffel speak of the 
“suspension of sense-making” when playing the “word problem game”. 

Figure 6.2 shows an example (from the DISUM project), a student’s answer 
to the “filling up” task (example 2 in Chapter 3). This student has taken 
the three quantities given in the text and correctly performed two divisions, 
but these operations do not make any sense in this context (which is why 
a translation of the text is not necessary). Such a substitute strategy even 
seems to become more popular with age; in a school context, it makes sense 
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to follow it by attempting to please the teacher, especially to pass examinations, by 
at least doing something since the majority of contextual examination questions 
are often only dressed-up mathematics tasks that do not require an understanding 
of the given situation. This behaviour of students is empirically well documented 
in many countries around the world. Here is a well-known example from these 
empirical studies, the “Army Bus” task (Verschaffel et al., 2000): “450 soldiers 
must be bussed to their training site. Each army bus can hold 36 soldiers. How 
many busses are needed?” Popular answers according to the substitute strategy are 
“12 busses remainder 18” or “12.5 busses”. Another example of a calculation that 
doesn’t pay serious attention to the situation is this: “An orchestra needs 40 minutes 
to play Beethoven’s 6th symphony. How long will it take to play Beethoven’s 9th 
symphony?” (Hugh Burkhardt, personal communication). An answer sometimes 
heard is 60 minutes (the rule of three!), and a similar answer applies to “2 eggs need 
6 minutes to get hard boiled. How long will 20 eggs need?” and also to “18 out 
of the 24 pupils in the class need 45 minutes for a written mathematics test, 6 are  
ill. How much time would all 24 students need?” The substitute strategy cannot 
be successfully applied with genuine modelling tasks since mostly it leads to an 
inadequate representation of the situation. Moreover, not all relevant information 
is always given, or sometimes the presentation of the task contains data that are 
irrelevant for the question to be answered. In other words, for genuine model-
ling tasks, it is indispensable to really understand the situation presented. The need 
to understand the situation in terms of the characteristic properties of the extra-
mathematical context in which it is embedded is an essential reason why modelling 
tasks are difficult for students of all ages and backgrounds.

The second step, “simplifying and structuring the situation”, is a source of dif-
ficulties as well. As Jankvist and Niss (2019) found in the abovementioned study, 
the predominant reason why several students gave inadequate solutions to model-
ling tasks was not that they did not know the mathematics needed or that they 
were unable to solve the resulting mathematical problems; they were unable to 
successfully pre-mathematise the situations in a way that was conducive to subse-
quent sensible mathematisation. The tasks in that study were deliberately chosen to 

FIGURE 6.2 A student’s solution to the “filling up” task
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require only basic mathematics; examples include the estimation of the height of a 
building on a photograph, the calculation of the average speed for a walk up and 
down a hill at two different speeds, and the determination of which of two circular 
pizzas of different sizes and prices gives the best value for money. The authors offer 
possible explanations of their observations. One is that some students – under the 
influence of the didactical contract they are accustomed to – did not pay serious 
attention to the formulation of the tasks, or to the conditions stated therein, but 
rushed off to find cues that may lead them to do some mathematical work they 
are familiar with. A second explanation is that some students did not reflect on the 
implications of the information provided in the task and failed to make relevant 
assumptions and specifications of the situation to be modelled. A third explanation 
is that some students were unable to undertake implemented anticipation of the 
steps needed for completion of pre-mathematisation and for arriving at a tractable 
mathematisation (cf. section 2.6).

Students must identify relevant variables in the given situation to find connec-
tions between these variables and to make assumptions concerning missing values 
of some variables. Making simplifying assumptions about real-world problems 
and clarifying the goals of the real model (and eventually selecting a model) were 
found by Frejd and Ärlebäck (2011) to be major stumbling blocks to Swedish 
upper secondary students getting started in the modelling process. In the “fill-
ing up” example (see Chapter 3), the identification of the two decisive variables, 
petrol consumption and tank volume of the car, requires students to take the 
situation seriously and to understand it in sufficient depth. In addition, they must 
make assumptions; not surprisingly, many students are afraid to make assump-
tions by themselves since, in many countries, they are not likely to have met 
such situations in school before. Rather, some students give up instead of making 
assumptions, as the following solution (Figure 6.3) to “filling up” in a test (within 
the DISUM project) shows:

FIGURE 6.3 Another student’s solution to the “filling up” task

(“You cannot know if it is worthwhile since you don’t know what the Golf [car] 
consumes. You also don’t know how much she wants to fill up.”) The student 
has clearly identified the two decisive variables for the basic model, petrol con-
sumption and tank volume, which indicates that he has understood significant 
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elements of the situation. However, he does not move on but stops his solution 
at this point, presumably because the values of these two quantities are missing 
in the text.

As indicated, the significance of implemented anticipation (see section 2.6), 
introduced theoretically by Niss (2010) and investigated empirically by Stillman 
and Brown (2014), Niss (2017), Werle de Almeida (2018) and Jankvist and Niss 
(2019), manifests itself during this second step because simplifying and structuring 
the situation, identifying relevant variables and relations between them, and making 
assumptions all have to be enacted with an eye to what could or should come next 
in the modelling process. That is, to make these choices and decisions, the modeller 
needs to project him- or herself into phases that have not yet occurred and to make 
use of that projection in the current phase.

The third step, “mathematising the simplified and idealised extra-mathematical 
(or real) model”, often requires formalising verbal statements and writing 
down equations or functions to draw idealised geometrical configurations. 
This presupposes sufficient mathematical knowledge, including understanding 
the basic ideas behind the mathematical entities (the “Grundvorstellungen”, 
see vom Hofe & Blum, 2016, which means the mental representations of 
these entities which carry their meaning). Undertaking mathematisation also 
requires devising a heuristic strategy, which is sometimes rather challenging 
(Stender, 2018; Albarracin & Gorgorió, 2014; Stillman et al., 2015; Galbraith 
et al., 2007). Once again, a crucial feature of the mathematisation step is the 
need for the student to perform implemented anticipation. An example of 
the need for basic ideas is seen in the “traffic flow” task (see example 6 in 
Chapter 3). Students must be able to condense the relation between the rel-
evant variables speed, length, distance and flow to the equation F = v/(l + d) 
where d itself depends on v. Experiences with students at all levels show that 
missing conceptual understanding of division leads to severe difficulties in 
establishing this equation since it is necessary to find a number (the number 
of cars on a road segment of a certain length) by dividing two lengths (the 
total length of the relevant street interval and the length that one car covers 
on the street). Positively speaking, a conceptual understanding of division as 
“sharing equally” will give immediate access to the term v/(l + d) in concrete 
cases, for instance, for a 50 km street interval if the speed is 50 km/h, and 
the basic idea of a variable as “placeholder” admits a generalisation yielding 
the formula. More than that, the basic notion of function (either according 
to the conception of mapping or according to the conception of covariation: 
“What happens to y if x is changing?”) is needed, too, since it is necessary 
to interpret this equation as a function v → F whose maximum leads to the 
solution of the problem. This is also a source of difficulties, for example, if 
a student cannot cope conceptually with composite functions or technically 
with rational functions. In several other examples in this book, functions 
emerge as natural models, for instance, linear functions in the taxi example 
(section 2.2), power functions in the loan amortisation example (example 3 in 
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Chapter 3) or exponential functions in the paper format example (example 4 
in Chapter 3).

The fourth step, “working mathematically”, is also a source of numerous chal-
lenges, difficulties and mistakes. The crucial element here is to devise a strategy 
to answer the mathematical questions that have arisen from the mathematisation 
step. Mastering the mathematical processes and reasoning involved in imple-
menting the strategy once it has been devised also involves several different 
challenges. However, we abstain from dealing with such challenges, difficul-
ties and mistakes here since these are part of mathematical problem solving at 
large and are not particular to modelling problems (see Schoenfeld, 1985, 1994; 
Lesh & Zawojewski, 2007).

The fifth step, “interpreting the mathematical results”, is not equally demanding. 
In tasks set by the teacher, this step is sometimes forgotten since students think they 
are done after arriving at a mathematical result. However, because interpretation 
requires taking the extra-mathematical situation seriously and engaging mentally in 
it, there are also various possibilities of making mistakes resulting from a superficial 
engagement in the situation (also see Blum, 2011).

The sixth step, “validating and evaluating”, often does not take place at all, 
unless the task has been devised by students themselves. It seems to be part of 
the “didactical contract” between teachers and students, in many parts of the 
world, that it is exclusively the teacher’s responsibility to check the correctness 
and appropriateness of solutions. Here is an example: When asked to estimate 
the height of a five-storey building from a photograph which also includes a 
number of persons standing near the building, a student, after having used a 
scaling model based on the height of a door, concluded that the building was 
1.6 km tall because he forgot to adjust the units (Jankvist & Niss, 2019). The 
student did not bother to check whether the result was reasonable; his job was, 
in his view, only to come up with an answer. And another example (for more 
details, see Blum & Borromeo Ferri, 2009): A group of students had correctly 
found, in the “lighthouse” task (see example 3 in Chapter 3), that a dot-like 
ship is 20 km away when it sees the lighthouse for the first time. Then they 
modified their model by assuming that the ship is 10 m high and found a 
distance of 16 km. Figure 6.4 shows the students’ report (“From the horizon 
you can look ca. 20 km. . . . If the ship is 10 m high, the weather is good and 
the radius of the earth is 6370 km, then the lighthouse can be seen from ca. 
16 km distance.”). A validation of this solution would have made it obvious that 
something must be wrong since a taller ship will, of course, see the lighthouse 
earlier. We will come back to this example in section 6.4. Czocher (2018), in a 
small-scale study of engineering students, showed that validation and evaluation 
of model outcomes and models can be more complex than what is oftentimes 
thought and that it may be intrinsically intertwined with several other stages of 
the modelling process. As to the strategic aspects of evaluating the modelling 
process, focusing on the choice of ways in which such evaluation can be under-
taken, also see Vorhölter (2018).



What we know from empirical research  121

FIGURE 6.4 A students’ solution to the “lighthouse” task

6.3 Individual modelling routes

We know from several studies (Matos & Carreira, 1997; Leiß, 2007; Borromeo 
Ferri, 2011; Schukajlow, 2011; Sol et al., 2011) that if students are dealing with 
modelling tasks independently, the modelling process is normally very irregular 
and does not follow those analytically constructed ideal-typical loops described 
in Chapter 2, representing a well-defined path, in any regular manner. Instead, 
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actual modelling processes are characterised by jumps back and forth and in and 
out between the extra-mathematical world and mathematics, by the omission of 
certain steps or by “mini-loops”. Borromeo Ferri (2007) speaks of “individual 
modelling routes”, that is, individual sequences of steps within the complex sce-
nario of connections between the extra-mathematical world and mathematics as 
depicted in various modelling cycles, influenced by individual knowledge, experi-
ences and preferences such as individual thinking styles. To be more careful, one 
should speak of “visible individual modelling routes” since we only have access to 
externalisations of modelling processes (spoken or written texts, pictures, diagrams, 
formulae) and not to internal thought processes, even though we may have access 
to student conversations in small groups or are able to conduct interviews with 
students along the road or after the fact. Here is an example, referring again to 
the “lighthouse” task (see example 3 in Chapter 3). The students in a grade 10 
class solved this task individually, without support (see Borromeo Ferri, 2007, for 
more information). Figure 6.5 shows the modelling routes taken by two students, 
embedded in the modelling cycle used in this study.

FIGURE 6.5 The modelling routes of two students

These two routes are rather distinct and seem to reflect the “thinking styles” of 
the two students (see Borromeo Ferri, 2007, for details).

6.4 Quality teaching of modelling

What do we know from empirical studies about effective teaching of modelling, 
related to the goals connected with modelling? Generally speaking, overarch-
ing findings about quality teaching of mathematics should also be valid for teaching 
mathematics in the context of relations to the extra-mathematical world or, in short, 
for teaching mathematical modelling, as long as these findings can be explained 
by certain theories about the learning of mathematics or human learning in gen-
eral. Meta-studies such as Hattie (2009) give robust indications of which teaching 
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approaches promise to cause learning effects and which do not. However, since 
teaching always takes place in environments that also depend on cultural factors, and  
since learning always depends (see section 6.1) on the specific context in which 
it takes place, we have to be careful about generalising specific empirical results. In 
the following, four important aspects of quality teaching (a–d) are discussed with 
particular regard to their role for teaching modelling.

a) Classroom management and learner orientation

A general result that is supported by many studies is that desirable learning effects 
can only be expected if the teacher maintains effective and learner-oriented 
classroom management (see, e.g., Hattie, 2009; Timperley, 2011; for a conceptual 
framework see Kunter & Voss, 2013). This includes structuring lessons clearly 
in continuation of a carefully thought-through didactico-pedagogical design of 
the lesson, with clear aims, using lesson time effectively, separating learning situ-
ations and assessment situations in a recognisable manner, linking the lesson(s) to 
students’ existing knowledge, using students’ mistakes constructively as learning 
opportunities, giving individual feedback and support, and varying methods and 
media flexibly. These are general aspects which are necessary but not sufficient for 
desirable learning effects. These aspects typically refer neither to the content nor 
to deeper cognitive structures of lessons but mostly to surface structures. They are, 
however, still relevant. Especially for modelling activities, group work seems par-
ticularly suitable (Ikeda & Stephens, 2001; Blomhøj & Kjeldsen, 2018). The group 
is not only meant to be a social but also, and especially, a cognitive environment 
(co-constructive group work; see Reusser, 2001). We also mention here the lesson 
plans described in Becker and Shimada (1997) which give a clear structure to les-
sons: First, the teacher sets the problem. Then, the students work in groups on the 
problem, supported by the teacher if needed. When the solutions are completed, 
some students present their solutions on the board, and afterwards these solutions 
are compared and discussed.

Part of effective classroom organisation is the appropriate use of media for 
explorations or presentations. In section 5.7, we discussed the possibilities, problems 
and implications of the use of digital tools. Among the media that may be of use in 
modelling environments are all media used in mathematics lessons in general, such 
as calculators, computers, projectors or drawing aids.

One important aspect of “learner-orientation” is to encourage students to find 
their own modelling pathways in dealing with modelling tasks, individually or in 
small groups. In everyday teaching practice, it is not unusual for teachers to strongly 
favour their own approach, often without even noticing it, possibly because of 
their limited knowledge of the “problem space” (Newell & Simon, 1971) or per-
haps because they harbour definite beliefs about students’ prerequisites. This often 
leads to a situation where, in the end, all students produce more or less the same 
approach and result, induced by the teacher’s hints (Leikin & Levav-Waynberg, 
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2007; Borromeo Ferri & Blum, 2010b). Varying individual outcomes lead to mul-
tiple outcomes in the classroom. There are several reasons for encouraging multiple 
approaches and solutions to student tasks (Hiebert & Carpenter, 1992; Rittle-John-
son & Star, 2009; Tsamir et al., 2010; Brady, 2018). Thus, multiple approaches, when 
appropriate, reflect the genuine spirit of mathematical work and enable compari-
sons between, and meta-level reflections on, different approaches, even if the final 
results may be identical. It seems favourable to also encourage individual students 
to look for more than one approach. In the project MultiMa (Schukajlow & Krug, 
2013; Schukajlow et al., 2015), two independency-oriented teaching units with 
modelling tasks were compared; in one unit, students were explicitly required to 
produce multiple approaches. Those students who developed several approaches 
had higher learning gains in a pretest-postest design with modelling tasks (mostly 
from the topic area of linear functions). Degrande et al. (2018) propose, as a result of 
an empirical investigation into fifth and sixth graders’ solutions of word problems, 
encouraging multiple solutions from as early on as primary school.

b) Cognitive activation

It is essential to activate learners cognitively, that is, to stimulate students’ own 
reflective activities, to induce them to establish their own mental structures. In 
particular, as “modelling is not a spectator sport” (Schoenfeld, personal com-
munication), learning to model requires students to engage actively in modelling 
activities. This is not just a matter of general organisational structures such as 
whole-class teaching versus group work or individualised teaching, which are 
likely to depend on cultural backgrounds and traditions. The teaching methods 
must be chosen to ensure that learners become and remain cognitively active 
(Schoenfeld, 1994). One way to stimulate students’ mental activities is to let them 
work as independently as possible, modulo the didactico-pedagogical aims of the 
activities. Here, one should distinguish carefully between students working inde-
pendently but with teacher support and students working alone, totally on their 
own. Many studies (for instance, DISUM, see below) show that working alone 
may result in students getting hopelessly stuck and learning nothing. What is 
required, instead, according to many studies (see, e.g., Blum, 2011; Stender & 
Kaiser, 2016), is a continual balance between students’ independence and teacher’s 
guidance, in accordance with Aebli’s “Principle of minimum support” (Aebli, 
1985), which can be perceived as an amendment to Vygotsky’s “Zone of Proximal 
Development”. This calls for adaptive teacher interventions (Leiß, 2010), which 
means interventions which are as limited as possible and allow students, in case 
of difficulties and barriers, to continue their work as independently as possible. 
Whether an intervention is effective can – in principle – only be judged after-
wards: Has the cognitive barrier really been overcome? Adaptive interventions can 
be regarded as a special case of “scaffolding” (see Bakker et al., 2015). In everyday 
classrooms, teachers often resort to interventions focused on mathematical con-
tent, sometimes to prevent mistakes or blockages from occurring. According to 
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several studies (see, e.g., Leiß, 2007), teachers use strategic interventions sparingly, 
and most interventions are not adaptive. Strategic interventions (examples below) 
focus on the process at a meta-level and not on the content. They have, by their 
nature, the potential of being particularly adaptive. Generally speaking, the nature 
and extent of teachers’ interventions in students’ work is largely shaped by the 
didactical contract in the sense of Brousseau (1997) as well as by the teachers’ 
devolution of tasks to students.

A manifest example of a successful strategic intervention was observed in the 
context of the “lighthouse” task (example 3 in Chapter 3) in a German grade 
10 class (for more details, see Blum & Borromeo Ferri, 2009). Two groups of 
students had created a wrong model (shown in the end of section 6.2) by simply 
inserting the height of the ship into the Pythagorean formula instead of placing 
the ship beyond the horizon and drawing a second right-angled triangle. The 
other groups had not taken the height of the ship into account. The teacher 
noticed this mistake while observing the students’ work but refrained from inter-
vening. Instead, he checked the implications of the mistake by calculating for 
himself further distances for various ship heights (1 m, 5 m, 10 m, . . .). He then 
let one group present its work to the whole class, and only after all students’ pre-
sentations (where no student discovered the mistake) did he produce a cognitive 
conflict by showing his calculations for various ship heights and saying (translated 
from German):

I would like you to try to imagine the relationship between the height of the 
ship and the distance between lighthouse and ship once again by means of a 
sketch. Is the way in which this calculation was done really correct? I have just 
done calculations exactly in the way Max presented it here.

The students in one of the “erring” groups then found their mistake, corrected 
their model based on an appropriate sketch that they developed independently 
after the teacher’s stimulus and eventually presented the corrected model to the 
class.

The following list offers some examples of strategic interventions in modelling 
environments that proved supportive in the DISUM project (see Schukajlow et al., 
2012):

1 Read the text carefully!
2 Imagine the real situation clearly!
3 Make a sketch!
4 What do you aim at?
5 What is missing?
6 Which data do you need?
7 Have you already dealt with a similar problem?
8 How far have you got?
9 Does this result make sense for the real situation?
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Concerning the intervention “Make a sketch”, Rellensmann et al. (2017) found, 
in a study with 61 ninth graders, positive effects of the prompt to produce a 
drawing on the students’ modelling performance in a test with tasks related to 
the Pythagorean theorem. More precisely, the students were asked to produce, 
for each task, both a “situational drawing” capturing the fundamentals of the 
real-world situation and a “mathematical drawing” illustrating the mathemati-
cal model. The accuracy of the mathematical drawings correlated strongly with 
the modelling performance while the influence of the quality of the situational 
drawing on the quality of the mathematical drawing was mediated by the stu-
dents’ strategic knowledge on drawings. An in-depth analysis of students’ work 
showed that the prompt to make a situational drawing helped students under-
stand the situation given, the first step in the solution process (see section 6.2). 
A possible consequence for the teaching of modelling is to foster and further 
students’ knowledge of drawings, as part of developing their meta-knowledge, 
and, when appropriate, advise them to make a situational as well as a mathemati-
cal drawing.

Stender (2018) shows how heuristic strategies in the sense of Polya (1973), such 
as “Break down the problem into sub-problems”, “Explore extreme cases” or 
“Combine special cases to the general case”, may lead directly to corresponding 
strategic teacher interventions. These interventions proved successful in a study 
with the same task, which means they helped most students to overcome their 
blockages and to continue with their independent work.

c) Meta-cognitive activation

Another important criterion for quality teaching is the activation of learners not 
only cognitively but also meta-cognitively (see Schoenfeld, 1987, for the role of 
meta-cognition in mathematical learning). All activities should be accompanied 
by reflections on the fly and, in retrospect, with the aim to advance appropriate 
learning and problem-solving strategies, cognitive as well as meta-cognitive, such 
as planning, monitoring, regulating or evaluating. Above, we mentioned promising 
strategies such as “Make a sketch” or “Decompose the problem into sub-prob-
lems”. There are empirical results concerning positive effects of using strategies for 
modelling activities (Tanner & Jones, 1995; Schoenfeld, 1994; Matos & Carreira, 
1997; Stillman & Galbraith 1998; Goos, 2002; Kramarski et al., 2002; Stillman, 2011; 
Schukajlow & Krug, 2013; for an overview, see Greer & Verschaffel, 2007; Vorhölter 
et al., 2019). Recently, Vorhölter (2018) proposed a way of conceptualising and 
measuring meta-cognitive modelling competencies and utilised it with 431 grade 
9 students to identify the meta-cognitive strategies they used. She found that three 
sorts of strategies prevailed: strategies meant to ensure a smooth modelling process; 
strategies used for regulation when problems occur; and strategies for evaluating the 
entire modelling process.

An example of a strategic instrument for modelling is the “Solution Plan” which 
was used in the DISUM project for the lower secondary level. This is a four-step 
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schema summarising how modelling tasks can be solved (“Understanding task/
Searching mathematics/Using mathematics/Explaining result”; see Figure 6.6 and 
see Blum, 2011, for more details).

FIGURE 6.6 The DISUM “Solution Plan” for modelling tasks

As is the case with most versions of the modelling cycle, this is not meant to be 
a schema that students must follow but a guideline, particularly useful in case dif-
ficulties arise. It turned out that ninth graders who used this instrument had higher 
learning gains in a test with modelling tasks after a five-lesson teaching unit on 
modelling than did students to whom it was not available (for details, see Schuka-
jlow et al., 2015).

d) Challenging content

Seen from the perspective of mathematics as a subject, one of the most important 
quality criteria is challenging orchestration of the content, especially by means of 
substantive tasks. Students need continual opportunities to develop and practice 
the aspired competencies at varying cognitive levels. Considering our knowledge 
about situated cognition (see section 6.1), it is vital that students have extensive 
opportunities to deal with various kinds of modelling tasks, with varying extra-
mathematical contexts and varying mathematical content. As stated in section 5.6, 
authenticity of the contexts is not always required. However, empirical studies show 
that if contexts are more authentic, the “suspension of sense-making” (see section  
6.2) can be reduced considerably (Palm, 2007; Verschaffel et al., 2010; Kaiser & 
Schwarz, 2010). For instance, if the “Army bus” task (section 6.2) is embedded in a 
credible context in which students have to fill in an order form to a bus company, 
the number of reasonable solutions increases considerably. Empirical studies such 
as Carreira and Baoia (2018) show that students are willing to engage also in non-
authentic contexts if the contexts are credible to them; the context presented in 
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this study of ninth graders is the mixing of blue, yellow and white paint to obtain 
desired shades of green.

Substantive tasks as a key component in quality teaching are not only a matter 
of single lessons or units but also must be kept in mind for long-term planning of 
teaching. Competencies develop in long-term learning processes, and learning is 
always “further learning” by linking new content to learners’ pre-knowledge. An 
important aspect of quality teaching is to develop well-coordinated sequences of 
units and tasks that enable long-term competency development, in particular of 
modelling competency/ies; see section 6.7 for more reflections on competency 
development.

6.5 A “successful” project with a “successful” lesson

Several studies (both case studies and intervention studies) have shown that math-
ematical modelling can be learned by secondary school and tertiary students 
provided they receive quality teaching (see, e.g., Kaiser-Meßmer, 1987; Galbraith & 
Clathworthy, 1990; Abrantes, 1993; Maaß, 2007; Biccard & Wessels, 2011; Schuka-
jlow et al., 2012; Blomhøj & Kjeldsen, 2018). Some studies have demonstrated that 
students’ beliefs about mathematics can be broadened by way of quality teaching. 
We refer here to the DISUM project (for more details, see Blum & Leiß, 2007; 
Blum, 2011; Schukajlow et al., 2012).

In the main part of the DISUM project (2009–2013), two teaching units of 
10 lessons each for grade 9 on modelling were conceived in two versions: one based 
on an “operative-strategic” teaching design and one making use of a “directive” 
teaching design. The guiding principles of the “operative-strategic” design were as 
follows:

1 Teacher’s guidance aiming at students‘ active and independent modelling pro-
cesses, with adaptive interventions;

2 Change between independent work in small groups and whole-class activities 
(concerning students’ presentations and retrospective reflections); and

3 Teacher’s coaching based on the “Solution Plan” mentioned in section 6.4.

The guiding principles of the “directive” design were as follows:

1 Development of common solution patterns by the teacher; and
2 Change between whole-class teaching (oriented towards the “average stu-

dent”) and students’ individual work in exercises.

Both “operative-strategic” and “directive” teaching styles were conceived as ideal-
typical styles for independence-oriented respectively teacher-directed teaching, 
realised by experienced teachers from a preceding reform project (“SINUS”, see 
Blum, 2008) who were particularly trained for the project. Both styles and each 
single lesson were described in detail in two so-called prompt books which formed 
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the basis for the training. The modelling tasks were identical in both designs and 
were treated in the same order. In the first round of the project, 7 + 7 grade 9 classes 
from the intermediate level (“Realschulen”) took part. All classes were reduced to 
16 students each, by means of a preceding mathematics achievement test, to have 
comparable groups in terms of mathematical performance. The teaching unit was 
framed by a pre-test immediately before lesson 1 and a post-test immediately after 
lesson 10, consisting both of modelling tasks and intra-mathematical tasks in the 
content areas of linear functions and the Pythagorean theorem. The test results 
showed a significantly higher learning progress of the “operative-strategic” classes, 
stemming from their bigger progress in modelling, whereas the learning progress 
concerning the intra-mathematical skills and abilities were identical. The “direc-
tive” classes had no significant learning gains in modelling at all – a remarkable 
result. From a normative point of view, the progress of half a standard deviation 
was not satisfactory, even for the “operative-strategic” classes. In the second round 
of the project, one year later, an “integrated” teaching design was conceived which 
contained both operative-strategic and directive elements and in which both the 
students and teachers had access to the Solution Plan. The “directive” elements 
integrated into the “operative-strategic” design were those which, according to 
classroom observations and theoretical considerations, had the biggest potential to 
improve the “operative-strategic” design, namely an introduction of the Solution 
Plan by a teacher demonstration of an ideal-typical handling of a modelling task 
(using the teacher as a “model”) and individual practising in the last two lessons of 
the unit. The progress in the re-designed 10-lesson unit was now markedly bigger, 
nearly one standard deviation.

We present here a typical lesson from the integrated design. The modelling task 
treated in this lesson is “filling up” (see example 2 in Chapter 3).

1 The task is distributed to the class, and a student reads it aloud; only questions 
concerning the text are allowed (“What kind of a Golf does Mrs. Stein have?”), 
no hints for solutions are given; each student has, on his/her desk, a “working 
sheet” with guidelines concerning the general approach to dealing with the 
task (“first read the text and work by yourself for a while, then exchange your 
approaches and results within your group, . . .”) as well as the four-step Solution 
Plan (which had been introduced in the third lesson of the unit).

2 Each student works by him/herself on the task; the teacher walks around, 
observes, diagnoses, encourages and gives minimal support if necessary (such 
as “Imagine the situation concretely; accompany Mrs. Stein in your mind and 
think about what she could be doing” or “Make a sketch”) or responds to infor-
mation questions (such as “How much petrol does such a Golf consume?”).

3 The students sit in groups of three to four students in the beginning; after a 
while, the individual approaches are compared within each group; the teacher 
continues to observe and to give minimal guidance.

4 Each student completes his/her modelling work individually; the teacher 
encourages activities to validate the model results.
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5 Some solutions (models and results) are presented to the whole class (some of 
the presenters have been identified and asked by the teacher before, and some 
students volunteer spontaneously).

6 The solutions are compared and discussed (especially numerical approaches 
with differing assumptions and, if available, algebraic approaches), and further 
variables such as time and risk are put forward, provoked by the teacher.

7 The modelling processes are analysed in retrospect, aided by the four-step Solu-
tion Plan.

8 The students get the opportunity to improve their individual approaches and 
outcomes, supported by their neighbours; the teacher requests that no student 
should copy one of the models presented but seek to improve his or her own 
work.

9 Homework: Each student writes down his/her “optimal” individual solution.

Whether this lesson satisfies the quality criteria described in section 6.4 depends 
not only on the global structure of the lesson and on the underlying prompt book 
but equally on the teacher’s concrete actions in the classroom, which can only be 
judged by analysing the actual lesson in detail. However, several elements of quality 
teaching can be identified in this lesson description, such as a variation of methods 
to activate the learners cognitively and to encourage and support their independent 
modelling, encouragement of multiple approaches, retrospective reflections and 
thus a fostering of strategies, and a manifest cognitive demand of the task given. 
Classroom observations, video analyses of the lessons and student questionnaires 
(administered in each lesson) indicate that the treatment was implemented appro-
priately and the students had ample opportunities to model independently.

6.6 Teacher competencies for teaching modelling

From several studies, we know that, apart from the students and their attitudinal and 
affective approach to education and the general structural and cultural environment 
of schools and schooling, the most important “variable” in the teaching-learning 
situation is the teacher. His/her professional competencies have a paramount influ-
ence on the quality of what happens in the classroom and on students’ learning 
progress. This especially holds for teaching mathematical modelling (Stender et al., 
2017; Maaß & Engeln, 2018).

In terms of general teaching quality in mathematics, results from the COACTIV 
project (see Kunter et al., 2013) show an immense influence of the teachers’ peda-
gogical content knowledge (PCK) in mathematics on the quality of instruction 
and on the students’ mathematical achievement. This project was conceptually and 
technically embedded in the German PISA project, especially in the longitudinal 
study of 2003–2004 where whole ninth grade classes were tested. The teachers of 
these classes were representative of secondary mathematics teachers in Germany. 
In COACTIV, these teachers were extensively tested and examined so that the data 
of the teachers and their students could be considered together. In particular, the 
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teachers’ PCK was conceptualised and tested in three dimensions: the ability to find 
several solutions to PISA mathematics tasks; the ability to explain certain math-
ematical content in multiple ways (such as why “minus times minus yields plus”); 
and the ability to predict mistakes based on diagnoses of similar ones. It turned out 
that the most important variables, mediating between teachers’ competencies and 
students’ learning by influencing the quality of instruction (see section 6.4), were 
classroom management; teachers’ constructive support for learners; and the cogni-
tive levels of the mathematical tasks used on class tests. The teachers’ mathematical 
content knowledge (CK) was not directly related to those mediating variables but 
proved to be an important source for the PCK.

Modelling was not the main focus of the COACTIV study, although the teacher 
tests also contained tasks related to modelling (for instance, writing down multiple 
solutions for an everyday problem involving proportional functions). What com-
petencies a teacher needs to devise and carry out high-quality teaching activities 
for modelling is still an open research question. This is not surprising given the 
immense variation of economic, cultural, structural, organisational and traditional 
boundary conditions for teaching in different parts of the world. On a theoreti-
cal level, the four-dimensional model shown in Figure 6.7 (see Borromeo Ferri & 
Blum, 2010a; Borromeo Ferri, 2017) comprises important modelling-related com-
ponents of teachers’ PCK.

FIGURE 6.7 Model of teacher competencies for modelling

Source: Borromeo Ferri, 2017

Most of these aspects are addressed in this book. Some aspects, such as carrying 
out lessons, can only be advanced by work in practice. It is a major task of teacher 
education, both pre-service and in-service, to advance those competencies. Bor-
romeo Ferri (2017) describes an evaluated module for implementing mathematical 
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modelling into teacher education, oriented towards the abovementioned compe-
tency model. This module starts with solving and developing modelling tasks for 
school, accompanied by theoretical reflections on modelling. After analysing school 
students’ solutions to some of these tasks as well as video clips from modelling les-
sons, using criteria for quality teaching, teacher students carry out a modelling unit 
by themselves. Afterwards, they report about their experiences. For more details of 
this module, see Borromeo Ferri (2017, pp. 3–12). Criteria of effective in-service 
teacher education, not only concerning mathematical modelling, are described in 
section 5.3.

6.7 Modelling competencies

Along with the manifest growth of interest in modelling competencies, research 
began to empirically study students’ modelling competency/ies, including the 
development of such competencies over time. In the following section, we will 
mention two examples.

Frejd and Ärlebäck (2011) charted the modelling competencies among Swedish 
upper secondary students and found that students’ modelling competencies were 
only weakly developed and that making simplifying assumptions about real-world 
situations constituted the most significant challenge to students. In a comparative 
study of 1108 upper secondary German and Chinese students’ modelling compe-
tencies, Ludwig and Xu (2010) found that while there were no gender differences 
among German students, there were for the Chinese students (girls performed bet-
ter than boys). The study further found that in both countries, students increased 
their modelling competencies with age/level, and the progress was faster among 
Chinese students in the upper grades.

Competencies such as the modelling competency ideally are developed in long-
term learning processes, beginning in primary school with “implicit models” 
(Greer & Verschaffel, 2007; Borromeo Ferri & Lesh, 2013) and continuing over the 
years. We know from research that a necessary means for such a long-term compe-
tency development is sustained and intelligent practising of mathematical modelling 
activities. “Intelligent” means that all aspects (sub-competencies, content, context, 
cognitive demand) are deliberately varied and linked by the teacher, both within 
and across teaching units, and that learners are made conscious of these variations 
and connections. Some studies (see Blomhøj & Jensen 2003; Kaiser & Brand, 2015) 
indicate that both purely “atomistic” approaches, where the emphasis is on the 
development of modelling sub-competencies, and purely “holistic” approaches, 
where the emphasis is on the modelling competency as a whole (see section 3.8), 
have their shortcomings. A balance between sub-competencies and the modelling 
competency as a whole is advisable. It is an open question as to what such a balance 
should look like to maximise desirable learning outcomes.

What we need, both for theoretical and practical reasons, is a competency devel-
opment model for modelling which is theoretically sound and empirically well 
founded. One approach to characterising an individual’s competency development 
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over time comes from the Danish KOM project (Niss & Jensen, 2002; Niss & 
Højgaard 2011; Blomhøj & Jensen, 2007). The authors distinguish between three 
dimensions in an individual’s possession of a given mathematical competency (cf. 
Chapter 2): the “degree of coverage” of the defining aspects of this competency; 
the “radius of action” indicating the spectrum of contexts and situations within 
which the individual can activate the competency; and the “technical level” which 
indicates the conceptual and technical level of the mathematical entities that the 
individual can bring to modelling situations. Progress in the development of the 
modelling competency means progress in at least one of these dimensions and 
decrease in none of them.

6.8 Assessment of mathematical modelling

Assessment of students’ mathematical modelling attracted the interest of research-
ers in the field at a rather early stage of its development (e.g., Gillespie et al., 1989; 
Francis & Hobbs, 1991). Thus, Niss (1993) identified what he saw as the main 
challenge for this endeavour: “How to shape and practice assessment in the area of 
application and modelling in such a way that assessment serves its purpose without 
destroying the application and modelling work?” (p. 44). This is in line with the 
general observation that assessment often becomes so simplistic and superficial that 
it reduces, compromises or even distorts the very essence of what it purports to 
assess. In this section, we concentrate on summative assessment and abstain from 
discussing modes of formative assessment accompanying learning processes.

Initially, the emphasis was on devising schemes for the assessment of students’ 
modelling work as reflected in written reports of their work, typically giving rise 
to rating scales (Haines, 1991; Naylor, 1991; Money & Stephens, 1993; Haines & 
Izard, 1995; Ikeda & Stephens, 1998; Haines et al., 2001). Such assessment focuses 
on students’ products, that is, the modelling work they carried out and their reports 
thereof. Only indirectly is this an assessment of students about their individual skills 
and competencies as modellers. For such assessment to be possible, it is necessary 
not only to consider a wide range of products produced by the individual student 
but also to capture the processes, deliberations, strategies, choices, decisions and 
arguments which the student activates in his or her modelling work. This requires 
access to more than the final modelling products, typically through observations 
of the individual student at work or interviews conducted along the road or after 
the completion of a number of modelling tasks. This led to a growing interest in 
creating ways to assess students’ modelling skills (Haines et al., 1993; Haines et al., 
2000, 2001), including progress in the development of such skills (Izard, 2007), an 
endeavour which soon after was transposed into attempts to assess students’ mod-
elling competency or (sub-)competencies (see Chapter 4), e.g., by Jensen (2007), 
Haines and Crouch (2007), Henning and Keune (2007) or Zöttl et al. (2011). As an 
example of a criteria-based assessment scheme, we mention the one developed by 
Dunne and Galbraith (2003, p. 19) in which modelling is being assessed in terms of 
four criteria, each of which can be accomplished at three different levels: C (lowest), 
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B (medium) and A (highest). The criteria are “ability to specify problem clearly”; 
“ability to set up model”; “ability to solve, interpret, validate, refine”; and “ability 
to communicate results”.

It is characteristic that most modes and instruments for the assessment of 
modelling products as well as individual students’ modelling competency/(sub-)
competencies (such as the Dunne and Galbraith scheme just described) are tightly 
connected to some version of the modelling cycle (see Chapter 2). This is hardly 
surprising since full-scale modelling and the ability to carry it out consists of 
handling the entire modelling process in all its facets. This has given rise to the 
question of how to do this. Basically, there are two kinds of approaches to assess-
ing modelling products and modelling competency/cies: holistic approaches and 
atomistic approaches (also see Houston, 2007). Holistic approaches seek to assess 
the entire modelling work or process at the same time in “one shot”, that is, all 
the aspects of modelling activity: identifying and posing model generating ques-
tions pertaining to some extra-mathematical context and situation; undertaking 
pre-mathematisation (including making assumptions and simplifications, procur-
ing information and collecting data); undertaking mathematisation by translating 
extra-mathematical questions and entities into mathematical questions and entities 
referring to some chosen mathematical domain; working mathematically with and 
within the model established to derive mathematical answers to the mathematical 
questions posed; de-mathematising the mathematical outcomes (i.e., interpreting 
the mathematical answers in terms of the extra-mathematical context and situation 
at issue); validating the model outcomes in terms of their validity and relevance 
for the situation modelled; and evaluating the model in terms of its intrinsic and 
extrinsic quality as a model, possibly vis-à-vis alternative models available. Atomis-
tic approaches to the assessment of mathematical modelling refrain from taking all 
aspects of modelling work and processes into account at the same time but seek to 
assess only one or a few aspects at a time, typically by zooming in on one or two 
steps in the ideal-typical modelling cycle. For an atomistic approach to provide 
comprehensive assessment of a student’s modelling competency/cies, it is necessary 
to collect and combine focused assessments of sufficiently many and sufficiently 
varied different aspects and steps in the modelling process as undertaken by the 
student being assessed.

This points to the need for identifying, designing and investigating possible 
modes of assessment, suitable for holistic or atomistic approaches to the assessment 
of mathematical modelling, respectively. Frejd, in his extensive literature review 
(Frejd, 2013) of 76 articles dealing with assessment of mathematical modelling, pays 
particular attention to such modes of assessment. His study identified five major 
modes of assessment adopted in the literature to assess mathematical modelling: 
written tests, projects, hands-on tests, portfolios, and contests, although the employ-
ment of these modes is not restricted to the assessment of modelling. The choice 
of a suitable assessment mode is linked to the aim of the assessment objective at 
issue. Written tests – including the tests used in large-scale international assessment 
programmes such as PISA (Turner, 2007) – are predominantly used in atomistic 
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approaches, whereas projects and portfolios, and in some contexts contests as well, 
are favoured in holistic approaches. The abovementioned assessment scheme devel-
oped by Dunne and Galbraith is an instance of a holistic approach. The same is 
true of the project-based modelling exams in Denmark as described by Antonius 
(2007) and of the laboratory-like assessment in the Dutch TIMSS supplement as 
described by Vos (2007). Recent contributions such as the discussion in Djepaxhija 
et al. (2017) about the suitability of multiple choice tasks for assessing modelling 
competencies show how topical the questions related to assessment continue to be 
for the modelling discussion.

The assessment issues mentioned have primarily dealt with the assessment of 
modelling products and with students’ learning of mathematical modelling as 
reflected in their modelling competencies. However, occasionally researchers have 
also investigated assessment as to which specimen of teaching is conducive to the 
fostering and furthering of students’ modelling competency (for an example, see 
Izard et al., 2003), even though we are not in a position to claim the existence of a 
larger bulk of systematic research with this focus.

6.9  Models as a vehicle in learning mathematics: 
the models and modelling perspective

In section 2.8, we introduced the non-contradictory distinction between two over-
arching purposes of mathematical modelling in mathematics education (see also 
Julie & Mudaly, 2007, for a somewhat similar but not completely identical distinc-
tion). The first purpose sees modelling as an independent goal of mathematics 
teaching and learning, whereas the second sees modelling as a vehicle for something 
else, above all the learning of mathematics as a subject.

While the bulk of this book focuses on modelling as an independent goal, the 
present section focuses on empirical research pertaining to the second purpose: 
modelling as a vehicle for the learning of mathematics. Several studies (see the com-
prehensive survey in Schukajlow et al., 2018) have shown that modelling can help 
foster motivation, interest and sense-making with regard to the learning of mathe-
matical concepts. Among others, Ottesen (2001) and Blomhøj and Kjeldsen (2010) 
have shown how modelling can facilitate the learning of tertiary mathematics.

A particularly broad approach to utilising mathematical models and mathematical 
modelling as a vehicle for students’ own construction and consolidation of math-
ematical concepts is the so-called Models and Modelling Perspective (compare 
sections 2.8 and 4.6), first introduced by Lesh and Doerr (2003). In this approach, 
the notion of Model Eliciting Activities (MEAs) as well as their extension to larger 
sequences, called Model Development Activities (MDAs), are crucial components. In 
these activities, students are presented with an extra-mathematical situation and are 
invited to make sense of it by (re)inventing or (re)creating mathematical  concepts – 
for example, ratio, scale, average, spread, rate of change, function, etc. – to represent 
key aspects of the situation given. Students’ experiences gained from this kind of rep-
resentational and sense-making work will not only help consolidate the mathematical 
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concepts thus established but also serve the purpose of making these concepts avail-
able for dealing with future extra-mathematical situations to which they are actually 
or potentially relevant. Lesh and Harel (2003), for instance, focused on the ways in 
which proportional reasoning could be consolidated by MEAs in the early grades. 
Lesh et al. (2000) presented an MEA in which middle school students were given 
measurement data of a number of aspects of the flight performance of six different 
paper aeroplanes and were asked to come up with an assessment of the paper planes 
with respect to four different sorts of flight characteristics: the best floater; the most 
accurate plane; the best boomerang; and the best overall paper plane. Ärlebäck et al. 
(2013) and Ärlebäck and Doerr (2018) have demonstrated how MDAs were used to 
underpin prospective engineering students’ understanding rates of change pertain-
ing to a range of phenomena in physics. To mention a final example: Brady (2018) 
showed how MEAs and MDAs could support in-service mathematics teachers’ 
imaginative engagement with graphical representations of linear function models.
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7.1 Introduction

This chapter presents and discusses selected successful cases of the teaching and 
learning of mathematical modelling from actual educational practices at different 
educational levels from around the world (Australia, Denmark, England, Germany, 
USA). By “successful” we mean that expectations held by those who implemented 
the cases in practice have, according to their reports, been fulfilled to a satisfac-
tory degree, meaning students have been engaged in genuine modelling activities 
and have constructed appropriate models; progression in students’ modelling com-
petency/ies have been detected as a result of their involvement in modelling 
programmes over a longer period of time; or teachers have reported on repeatedly 
fruitful implementation of certain materials in everyday classrooms.

We begin by taking a closer look at what counts as a case. We use the term “case” 
to denote an individual example – a constellation of objects, a set of circumstances, 
a situation or a process – which is an example of something, i.e., a special instance 
of a larger class of entities that share some characteristic features or properties. In 
other words, a case is not just a singular stand-alone example; rather, it points to and 
is a representative of something bigger than itself. In this chapter, we shall consider 
three types of cases concerning modelling in mathematics education. The first type 
of cases consists of individual modelling examples that have been implemented in 
actual teaching and learning and have been reported and investigated or evaluated 
with respect to the context(s) in which the implementation took place. The second 
type consists of sustained curricular programmes of mathematical modelling put 
into practice in certain educational settings, e.g., institutions or countries, during 
some extended period either within one institution or across different institutions. 
The third type of case consists of educational materials that have been designed for 
and implemented in a variety of different settings.

7
CASES OF MATHEMATICAL 
MODELLING FROM 
EDUCATIONAL PRACTICES
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We have provided a few cases of every type, for a total seven cases. We made 
no attempt to offer an exhaustive selection of significant cases – not even a bal-
anced one. Rather, our goal is to point to the existence of different types of cases 
of modelling that have been implemented in the actual teaching and learning of 
mathematics.

7.2 Individual implemented modelling examples

In this section, we present two modelling examples that have been treated by or 
with secondary students within the framework of projects to gain empirical insight 
into possibilities and conditions for the implementation of modelling in everyday 
mathematics classrooms. These examples are described in considerable detail.

Case 1: Cable drum

The problem

A modelling example that has been treated both by school students (grade 9 
onwards) and in teacher education is shown in Figure 7.1 (original German version 
in Förster & Herget, 2002).

The question is: “How long is the cable that fits on the drum shown on the 
photo, and whose data are given?”. In the following, we draw on considerations and 
experiences reported in Förster and Kaiser (2010) and Förster (2018).

FIGURE 7.1 The working sheet “cable drum”

Source: Förster & Kaiser, 2010
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Typically, students or teachers working on this task produce many different 
results for the cable length, stemming from different models of the ways in which 
the cable is being wound and its length calculated but also from certain mistakes 
made during the modelling process. Förster reports that in a German grade 10 class, 
the students ended up with 20 different lengths, ranging from 442 m to 1266 m.

The following five types of models are particularly natural to come up with. 
When we report percentages, we refer to the figures given in Förster (2018), based on 
observations of 449 ninth and tenth graders (15- to 16-year-old students). About a 
quarter of these students found no approach at all without support from the teacher.

Model M1: Separated circles

This is the most popular model with students as well as with teachers (about 30% 
of the students observed chose this model). It consists of a description of the cross- 
section of the cable wound on the drum using several layers of circles (see Figure 7.2; 
all of the following drawings are taken from ninth and tenth grade classrooms). It is 
presupposed here (and in all other models as well) that the cable is flexible enough 
to be wound around the drum.

In this model, the cable is perceived as consisting of many separated circular 
pieces of cable (annuli), with the same number of pieces in each layer. How many 
such pieces fit onto the drum? See Figure 7.3: Since L:2r ≈ 14.7, 14 circles fit 
horizontally, and since (R1 – R2 ):2r ≈ 6.3, 6 layers fit vertically. Therefore, the cable 

FIGURE 7.2 The circles model M1
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consists of 84 separated circular pieces, of which exactly the 14 pieces in one layer 
have the same radius. If the cable were allowed to protrude a bit above the drum, 
then seven layers may fit onto it. However, this would most probably not be realised, 
both for security reasons and because the full cable drum could then not be rolled 
on the ground.

The lengths of the various circular pieces can be calculated; see Table 7.1 
(rounded off to centimetres). The common radius of the 14 smallest annuli is 
R2 + r = 75 cm, the radius of the 14 annuli in the second layer is R2 + 3r = 105 cm, 
etc., until the sixth layer with radius R2 + 11r = 225 cm, if we measure the radii of 
these annuli in the centre of the cable (model M1a). The length of one annulus in the 
first layer is 2π · 75 cm ≈ 471 cm, etc. With six layers, the final result for the cable 
length is approximately 792 m. If a seventh layer is considered, the cable length is 
approximately 1016 m.1

If the radii of the circular pieces are not measured in the centre but at the lower 
“skin side” of the cables (inner radii, model M1b), these are, in all layers, 15 cm 
less than in Table 7.1 (this type of calculation was used by 10% of the students 
observed). This certainly leads to an under-estimate of the real length of the cable. 
Table 7.2 shows the calculations analogous to Table 7.1. With 6 layers, the final 
result for the cable length is now approximately 713 m, with seven layers approxi-
mately 924 m.

FIGURE 7.3 The circles model with given quantities
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TABLE 7.1 Lengths of the single layers for the circles model (all measures in m)

Layer Radius Circle length Length of layer Accumulated cable length

1 0.75 4.71 65.97 65.97

2 1.05 6.60 92.36 158.34

3 1.35 8.48 118.75 277.09

4 1.65 10.37 145.14 422.23

5 1.95 12.25 171.53 593.76

6 2.25 14.14 197.92 791.68

7 2.55 16.02 224.31 1015.99

TABLE 7.2 Lengths of the layers with inner radii (all measures in m)

Layer Radius Circle length Length of layer Accumulated cable length

1 0.6 3.77 52.78 52.78

2 0.9 5.65 79.17 131.95

3 1.2 7.54 105.56 237.50

4 1.5 9.42 131.95 369.45

5 1.8 11.31 158.33 527.79

6 2.1 13.19 184.73 712.51

7 2.4 15.08 211.12 923.63

TABLE 7.3 Lengths of the layers with outer radii (all measures in m)

Layer Radius Circle length Length of layer Accumulated cable length

1 0.9 5.65 79.17 79.17

2 1.2 7.54 105.56 184.73

3 1.5 9.42 131.95 316.67

4 1.8 11.31 158.34 475.01

5 2.1 13.19 184.73 659.73

6 2.4 15.08 211.11 870.85

7 2.7 16.96 237.50 1108.35

If the radii are measured at the upper “skin side” of the cables (outer radii, model 
M1c), these are, in all layers, 15 cm larger than when measured in the centre (this 
type of calculation was used by 5% of the students observed). Table 7.3 shows the 
calculations for this version of the model. Now, the length of the cable is approxi-
mately 871 m with six layers and approximately 1108 m with seven layers.
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Model M2: Helices

Some modellers find a (seemingly) better model where the cable is, in each layer, 
wound in the shape of a helix (see Figure 7.4 where the first layer is drawn).

According to this model, the cable becomes a bit longer since each circular piece 
according to model M1 must be mentally transformed into a part of a helix. How-
ever, calculations using the Pythagorean theorem show that the difference to the 
first circles model is minimal. Let us calculate, as an example, the length of one helix 
winding in the first layer. For this purpose, we must unroll the cable; see Figure 7.5.

FIGURE 7.4 The helix model M2

Source: Photo by Frank Förster

FIGURE 7.5 Unrolling the helix

The length of the first helix is:

√(2π · 75 cm)2 + (30 cm)2 ≈ 472 cm,

i.e., the helix is only 1 cm longer than the circle in model M1. The differences 
become slightly bigger from layer to layer, but they are still rather negligible. With 
6 layers the resulting length of the cable is, rounded off, again approximately 792 
m. Therefore, this technical complication is, in retrospect, not worth the effort.

Model M3: shifted separated circles “on gaps”

Practising and prospective teachers tend to use, often as a subsidiary improved 
model, the idea of “winding the cable on gaps”, so the circular cable pieces are 
shifted from layer to layer; see Figure 7.6.
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The reason to choose this model is that the vertical distance between two cable 
centres is now smaller than 2r = 30 cm, which was the distance in the previous 
models. By means of the Pythagorean theorem, we calculate the new vertical dis-
tance between two cable centres to:

√ (2r)2 – r2 = √ 3 · r = √ 3 · 15 cm ≈ 26 cm.

Since the layers are nearer to each other, 7 layers will now fit on the drum because 
(R1 – R2 ): √ 3 r ≈ 7.3. Thus, from the second layer on, the circular pieces wound 
around the hub of the drum will become a bit smaller; in the end, the seventh layer 
gives rise to an advantage. Table 7.4 shows the new calculations.

The result for the length of the cable is now approximately 942 m. This model 
is sometimes used qualitatively rather than quantitatively, with the following argu-
ment: When using this kind of winding, seven layers will indeed fit on the drum. 
Compared to the “pure” circles model, the windings become shorter, so 1016 m 

FIGURE 7.6 The shifted circles “on gaps” model M3

TABLE 7.4  Lengths of the single layers in the shifted circles “on gaps” model (all measures in m)

Layer Radius Circle length Length of layer Accumulated cable length

1 0.7500 4.71 65.97 65.97

2 1.0098 6.34 88.83 154.80

3 1.2696 7.98 111.68 266.48

4 1.5294 9.61 134.54 401.02

5 1.7892 11.24 157.39 558.41

6 2.0490 12.87 180.24 738.65

7 2.3088 14.51 203.10 941.75
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(the length in the circles model M1a for 7 layers) will certainly be too much, but 
792 m (the length in model M1a for 6 layers) will certainly be too little, so a reason-
able estimate will be somewhere in the middle, around 900 m.

However, this “improved” model does not quite fit the real situation because 
cables cannot be wound like that (the reader may try it by him/herself with an 
easily accessible cable, for example, from a lamp – unplug before trying!); see Fig-
ure 7.7. In real windings, each layer consists of a helix, and the helices have different 
directions from layer to layer, so the cable cannot be laid “on gaps”; the helix in 
the next layer lies entirely above the previous helix, like in the seemingly simpler 
circles model.

FIGURE 7.7 A real wound cable

Source: Photo by Frank Förster

Therefore, model 3, though mathematically more elaborate, is, unfortunately, not 
suitable.

With this insight in mind, we come back to our first model. The most suitable 
model in terms of real cables is a variant of model 1 (model M1*) with layers of 
circles where each layer is shifted against the previous layer, as in model M3, but the 
distance between neighbouring layers is 30 cm, as in models M1 and M2, because, as 
explained above, each cable in the next layer has to be laid above the cables beneath 
it (see Figure 7.8).

Since each layer consists of 14 circles, this model variant M1* leads to exactly the 
same result as model M1. Referring to model M1a (radii measured in the centres), 
the result of model M1* is approximately 792 m or, rounded off more liberally, 
approximately 800 m.
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Model M4: volume without holes

Instead of modelling the actual winding of the cable on the drum, the following 
model uses the volume of the cable (see Figure 7.9).

We calculate the cable length in this model by dividing the volume of the cable 
by its cross section. The simplest volume model (used by more than 10% of all 
students observed) presupposes that the cable fills the space densely on the drum, 
which means that there is no cable-free space (no “holes”). Its total volume is:

(π · R1
2 – π · R2

2) · L ≈ 81.42 m3.

FIGURE 7.8 The shifted circles model M1*

FIGURE 7.9 The volume model M4
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The cross section of the cable is π · r2 ≈ 0.0707 m2, thus the cable length is approxi-
mately 1152 m. It is clear from the construction (cable as a solid without holes) that 
this result is an upper bound for the real length. Many students and teachers who 
solved this problem used this as a second model after the circles model M1 to get 
such an upper bound.

Model M5: volume with holes

Considering the cable-free space (the “holes”) in the solid caused by the cylin-
drical cable according to the circles model M1 (see Figure 7.2), the volume is 
multiplicatively reduced by the ratio of the area of a circle and the area of a sur-
rounding square, that is, by the factor π/4 ≈ 0.7854 (this approach was used by 
more than 10% of all students observed). This leads to a cable length of approxi-
mately 0.7854 · 1152 m ≈ 905 m.

Considering the holes according to the shifted circles model M3, the reduction 
factor is now the ratio of the area of a semicircle and the area of a suitable equilateral 
triangle, that is, π/(2 · √ 3) ≈ 0.9069, for the four middle layers, whereas the ratio 
is π/4 ≈ 0.7854 as before for the two outer layers (see Figure 7.10). The average 
reduction factor is 0.8259.

FIGURE 7.10 The gaps in the volume model

The resulting new cable length is approximately 0.8259 · 1152 m ≈ 951 m.

Evaluating the models

A natural validation of the outcomes of the various models would be to confront 
them with reality: How long is the actual cable on this drum? In some cases, this 
will be possible by simply reading what is written on the drum, but if we have no 
other information than the measures given on the working sheet in Figure 7.1, we 
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are forced to validate the model results by plausible reasoning: How far away from 
real cable windings are the different ways in which the cable is wound on the drum? 
Which results are certainly too small (such as the 712 m from model M1b because 
the cable is longer than the length of its inner surface)? Which results are certainly 
too large (such as the 1152 m from model M4 because there are substantial cable-
free “holes” and also the 1108 m from model 1c with 7 layers and measures based 
on the length of the outer cable surface)? Therefore, any result in a range between 
750 m and 1050 m seems plausible.

The “cable drum” in the classroom

Treating the “cable drum” problem in the classroom may stimulate many activities. 
The situation is easily comprehensible by students, many of whom may already have 
seen a real cable drum on a construction site (like in Figure 7.11), for instance, if 
telephone cables are being put in the ground.

That is why the search for an appropriate geometric model can start immediately 
after reading the task. It is advisable to let students first estimate on a “gut feeling” 
level how long the cable might be. The solution process allows for natural internal 
differentiation within the classroom insofar as each student, or a group of students, 
can build a model corresponding to his/her mathematical abilities. It is also possible 
to find two or more different ways to model the problem, where the second way 

FIGURE 7.11 A cable drum in roadwork
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may serve as validation of the first solution, for instance, if the volume model M4 
is used to discuss whether the result according to the circles model M1 is plausible. 
Since circles play a decisive role, this topic should be known by the students. The 
task is usually suitable from grade 9 onwards, depending on the treatment of circles 
in the curriculum. Apart from fostering modelling competencies and demonstrat-
ing that mathematics is present in the real world, the “cable drum” task can also 
serve as an environment for rehearsing and practising the topic area of circles (basic 
notions, circumference, area) and cylinders.

Experiences in the classroom show that the “cable drum” task is motivating for stu-
dents, although it is most certainly not relevant for students’ current everyday or future 
professional lives and it is not authentic since in the real world it will generally be known 
how long the cable is (perhaps it is even written on the drum). However, the task is both 
challenging and manageable, and the modelling activities that take place, individually 
or in groups, are interesting and motivating per se, in addition to giving access to the 
kinds of – authentic – considerations that occur in real modelling. Experiences in many 
classrooms show that working on this task in groups leads to particularly stimulating 
discussions about reasonable approaches. By confronting the students’ models with real-
ity (does a real cable actually consist of singular annuli or helices?) they learn essential 
features of modelling in a natural way by dealing with this task.

The discussion of the shifted circles model M3 is particularly instructive. 
Students may believe that they have found a better model than the one merely 
based on layers of circles, and perhaps they even think they have found “the 
optimal” model. Below is a typical student argument for switching from M1 to 
M3 (Figure 7.12).

FIGURE 7.12 A seeming model improvement

(“Objection: You can save space if you arrange the cable like in ②”). Class-
room experiences show that students who have developed this model are 
generally so enthusiastic and proud about the seeming model improvement that 
they do not validate their results. The teacher (respectively teacher educator, 
if the learners are pre- or in-service teachers) should stimulate validation and 
evaluation activities, either by thought experiments (for strong visual minds) or – 
even  better – by real experiments with cables, wires or ropes, to let the students 
discover that model M3 is inappropriate. Fortunately, in a rich teaching-learning 
environment, students are not, in general, frustrated when they realise that their 
carefully designed model does not work because they acknowledge that they 
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have gained some valuable insight instead. This example shows that a math-
ematical model must be evaluated not according to its beauty or mathematical 
sophistication but according to its usefulness in dealing with the real world. This 
is an important general insight about mathematical modelling, which is part 
of meta-knowledge of mathematics as a discipline and which the cable drum 
example generates almost automatically.

During the modelling process, many instructive mistakes can occur in the class-
room. In a case study with 200 lower secondary students (15- to 16-year-olds), 
Förster (2018) found many different mistakes; here is a selection:

• A sequence of winding radii in model M1a with a distance of r = 15 cm instead 
of 30 cm, beginning with R2 + r/2 = 67.5 cm instead of R2 + r = 75 cm, so 
67.5 cm, 82.5 cm, etc., resulting in a cable length of 554 m;

• A sequence of radii in model M1a with a distance of r = 15cm, correctly begin-
ning with R2 + r = 75 cm, so first 75 cm but then 90 cm, etc., resulting in a cable 
length of 583 m with 6 layers and 692 m with 7 layers;

• The same wrong model as the previous one, but now with 8 layers because of 
an erroneous calculation of the number of layers by R1:2r ≈ 8.3, resulting in a 
cable length of 791 m;

• A sequence of winding radii in model M1b with a distance of 4r = 60 cm, cor-
rectly beginning with 75 cm and using 6 layers, resulting in a cable length of 
1108 m; 

• Calculating the circumferences of the circles in the circles model by using the 
sum of the inner and the outer radii, resulting in a cable length for 6 layers of 
1582 m.

In addition, numerous differing final results occurred because of inappropriate 
rounding of numbers. An observation in nearly all classrooms was that students are 
obviously not used to rounding off for the final result. Figure 7.13 shows a typical 
solution (using model M1a) where the result is given with an accuracy of three 
decimal points, which means precision to the millimetre. Apart from that, the solu-
tion is correct and clearly presented.

The “cable drum” problem in its present form appears to be rather “closed” 
because all relevant data are given. A more open version where some data are not 
given but must be inferred from the picture may seem worthwhile. Another pos-
sibility is to bring a cable on a drum into the classroom, for instance, a garden hose 
drum, and ask the same question as before. Here the students must identify and 
afterwards measure the decisive quantities. However, the experiences reported in 
Förster (2018) indicate that the present version of the task is still open enough to 
stimulate modelling activities and that more open versions may sometimes lead to 
arbitrary approaches with no results, leading to the teacher strongly intervening 
to generate results. It depends on the previous experiences of the students as to how 
open this task ought to be.



FIGURE 7.13 Correct solution using model M1a without rounding
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Case 2: Painting a Porsche

The real-world problem and approximate solutions

One important factor in calculating the production cost of a car is the amount of 
paint and varnish needed to paint the surface. Normally, there are four layers of 
paint and varnish, which are applied on the surface at varying thickness (grounding, 
infill, basecoat, clear coat). To calculate the amount of paint needed, the surface area 
of the car has to be known. In addition, the cost for one layer depends on its thick-
ness and on how many times the paint is applied.

How can the surface area of a car be determined? This question was the starting 
point of a teaching unit for the lower secondary level (grades 5 through 10), taught by 
Katja Maaß in Germany, mostly in grade 7 (see Maaß, 2004, 2006, 2018). Since Maaß 
was a teacher in Stuttgart, which is very close to Zuffenhausen where the Porsche is 
produced, she selected the Porsche 911 Carrera as an exemplary car (see Figure 7.14).

FIGURE 7.14 Measures of a Porsche 911
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To determine the surface area, a mathematical (geometric) model of the car has 
to be constructed, which allows students to approximately calculate the surface area. 
Since the teaching unit was conceived for the lower secondary level, no advanced 
mathematical methods (such as modelling certain contours of the car by functions 
and using integrals for calculating corresponding areas) were to be used.

There are several possibilities for modelling such a car in an elementary way. The 
simplest geometric model consists of a right-angled parallelepiped (a cuboid) with 
the maximal outer measures of the car, which are (see Figure 7.14) approximately 
4.5 m length, 1.9 m width and 1.3 m height. The surface of this solid (excluding 
the bottom) is:

2 · (4.5 m · 1.3 m) + 2 · (1.9 m · 1.3 m) + 4.5 m · 1.9 m ≈ 25.2 m2.

This is certainly an upper bound for the real surface area of the car and a very rough 
estimate. A more appropriate geometric model would be a right-angled parallel-
epiped which omits the windows and the wheels and therefore has a much smaller 
height, say 0.65 m instead of 1.3 m (half the height of the car). The resulting surface 
area (again excluding the bottom) is:

2 · (4.5 m · 0.65 m) + 2 · (1.9 m · 0.65 m) + 4.5 m · 1.9 m ≈ 16.9 m2.

We can find a better approximation if we decompose, on a picture, the surface of 
the Porsche (excluding all parts without paint such as windows, wheels or bumpers) 
into triangles or rectangles (see Figure 7.15 for the left side of the car), the real mea-
sures of which can be calculated by means of a suitable scale.

This calculation results in a surface area between approximately 13 m2 and 17 m2,  
depending on which plane figures are chosen, on the accuracy of measuring on the 

FIGURE 7.15 Decomposition of one side of a Porsche into triangles and rectangles
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drawing and on the accuracy of the scale. The real surface area is, according to the 
producers (in a note to Katja Maaß), approximately 12 m2.

The teaching unit “Surface of a Porsche”

In the following, we will present the teaching unit described in Maaß (2018). It was 
constructed primarily for grade 7 but can be implemented in other grades as well, 
supposing students have some previous knowledge of area. The unit started with 
presenting the problem to the students: “To calculate the costs of painting a Porsche, 
how can its surface area be determined?” Although lower secondary students are 
not car drivers themselves, this question is easy to understand and was interesting 
and motivating for them. The students quickly realised that some data are needed. 
The teacher supplied them with the data in Figure 7.14. A small difficulty was that 
all measures are in millimetres and have to be translated into metres because this is 
how lengths in the context of a car are primarily imagined. After a while, the stu-
dents presented ideas of how to calculate an approximate value of the surface area 
(see the approaches above):

• Modelling the Porsche by a big parallelepiped in which it fits entirely;
• Using a smaller paralellepiped with only half the height of the big one;
• Covering the surface of the car with paper or cloths and measuring the area of 

this cover;
• Decomposing the surface into many small triangles and rectangles; 
• Calling the Porsche company.

A whole-class discussion terminated with the decision not to pursue the idea of 
covering any further because no Porsche was available. The idea of calling the com-
pany was deputed to one of the students. The other three ideas were distributed 
to small groups (three to four students) to be further treated there (“big cuboid 
groups”, “small cuboid groups”, “decomposition groups”). In the course of the 
problem-solving process, several difficulties occured which caused the teacher to 
intervene, including the following:

• Some students in all groups had difficulties imagining the drawing spatially. A 
toy car provided by the teacher helped.

• Some students in the decomposition groups had troubles with the scaling. 
The teacher gave various hints, beginning by only giving the strategic prompt: 
“Imagine the relation between the picture and a real car as concretely as pos-
sible”, continuing by referring to students’ knowledge of maps and explaining, 
if needed, the relation between the measures on the picture and in reality.

After the group work, some students presented their calculations and findings to 
the whole class. The three approaches were compared, and it became clear that 
there is no right solution but a variety of approximations. Since some groups had 



162 Cases of mathematical modelling

unreasonably accurate results (“13.2375 m2”), the teacher explained why it does not 
make sense to give so many decimal points. It turned out that the results of the small 
cuboid groups and the decomposition groups were quite similar, so the students 
agreed that the small cuboid model is the most suitable one because it is both suf-
ficiently easy and sufficiently precise. Eventually, the students wanted to know how 
the Porsche company actually determines this surface area. The teacher explained 
that a CAD programme is used which is based on similar decomposition methods.

Evaluating the teaching unit

The teaching unit described in Maaß (2018) was completed with a regular class 
test that was adjusted to the unit. The teacher knew that the students will only take 
seriously what is assessed and emphasised that all elements of the unit might be part 
of the test. The test actually used by Katja Maaß in her grade 7 classes consisted 
of three tasks (see Figure 7.16), only one of which is in direct continuation of the 
teaching unit, whereas the two other tasks deliberately required some transfer.

Task 1 was a direct translation of the considerations and calculations made in 
the Porsche context into the context of a Mercedes: “Describe various possibili-
ties to calculate the surface area of the body of a Mercedes class A. Compare the 
approaches and the expected results. Calculate the surface area according to a 
method chosen by you.” The students were expected to essentially repeat what 
had been done in the unit and to find a result in the range of 13 m2 to 17 m2. In 
task 2, the students had to calculate the difference in the costs of covering a Par-
quet floor with two different materials, luxury maple (“Ahorn-select”) or beech 
(“Buche”). They had to first select the necessary information from the given 
price table and then calculate the area based on the given map, where one missing 
length had to be calculated using the underlying scale. Finally, they had to calcu-
late the resulting difference in costs. Task 3 contained a problematic proportional 
calculation in the context of running (“10 km in 40 minutes means 42 km in 168 
minutes”) and the students were asked, “What is your opinion on this?”. The stu-
dents were expected to activate their real-world knowledge of running and argue 
that proportional reasoning will, most probably, be inappropriate in this context.

For the marking of this class test and of modelling tasks in general, Maaß devel-
oped the following scheme which her students were informed about in advance:

1 Construction of the real model (see Figure 2.8) (Do the assumptions make sense, 
are the simplifications appropriate?): up to 10 points;

2 Use of mathematics (Are the variables and relations mathematised correctly, is the 
mathematical notation appropriate, are mathematical knowledge and problem 
solving strategies applied correctly, is the solution mathematically correct?): up 
to 15 points;

3 Interpretation of the solution (Is the mathematical solution interpreted correctly in 
the real world?): up to 5 points;

4 Critical reflection (Are all relevant aspects considered, are reference values used?): 
up to 10 points;
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FIGURE 7.16 The class test after the Porsche unit

5 Documentation of the way of proceeding (Are the steps of the solution process 
described and explained?): up to 15 points; and

6 Goal-directedness of the solution (Does the student proceed in a goal-oriented 
way or does he/she get lost in details?): up to 5 points.

Altogether, an answer to this task could receive maximum of 60 points. This scheme 
was used not only for this unit but generally in Maaß’s teaching (see Maaß, 2004, 
for the entire empirical study based on her own teaching in a German Gymnasium).
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The Porsche unit was conceived as an introductory unit in modelling, which 
means the learners were not supposed to have had modelling experiences before. 
Maaß reports that most of her grade 7 students had no pre-knowledge, but the results 
of task 1 in a class test proved that most students had, after this unit, no difficulties 
with typical modelling steps such as identifying relevant data, making assumptions, 
choosing models, rounding off results or comparing the outcomes of different mod-
els, providing the contexts were familiar. The mistakes made in task 1 were rather 
due to insufficient mathematical knowledge and skills, such as the use of a wrong 
formula (“V = a · b” for the volume of a cuboid), a wrong conversion of units 
(1830 mm = 18.3 cm”) or an inadequate conception of space. The results of task 2 
were even more encouraging since here, too, relevant data had to be extracted and 
assumptions had to be made but now in an unfamiliar context. Most mistakes in task 
3 were made when some students reverted to their usual behaviour when solving 
word problems by applying a proportional calculation without thinking about the 
context and without validating their result. This behaviour changed only gradually 
in the course of subsequent modelling units. An unintended effect of the Porsche 
unit was that some students took the following message away from the work: “Actu-
ally, you cannot make mistakes because nobody can control whether your solution 
is correct or not.” (Maaß, 2006, p. 135). Maaß’s study also showed how stable stu-
dents’ beliefs are and that these can only be changed in long-term processes. Some 
students were able to cope with modelling tasks from the beginning but were not 
interested in real-world connections (Maaß calls them “uninterested modellers”) or 
were not willing to engage in these (“reality-distant modellers”). Two other types of 
students were those with positive attitudes towards real-world connections combined 
with positive attitudes towards mathematics (“reflective modellers”) or with negative 
attitudes towards mathematics (“mathematics-distant modellers”). Maaß observed 
strong correlations between attitudes and performance, already in the first class test 
discussed above (for more details, see Maaß, 2004, 2006).

References

Maaß, K. (2004). Mathematisches Modellieren im Unterricht. Bad Salzdetfurth: Franzbecker.
Maaß, K. (2006). What are modelling competencies? In: ZDM Mathematics Education 38(2), 

113–142.
Maaß, K. (2018). Der Porsche 911. Mathematisches Modellieren für Anfänger. In: H.-S. 

Siller, G. Greefrath & W. Blum (Eds.), Neue Materialien für einen realitätsbezogenen Math-
ematikunterricht 4. 25 Jahre ISTRON-Gruppe – eine Best-of-Auswahl aus der ISTRON-Schrift-
enreihe (pp. 285–292). Wiesbaden: Springer Spektrum.

7.3 Curricular programmes of mathematical modelling

In this section, we present a university curriculum and a school curriculum with a 
substantial modelling content, implemented over many years in the respective educa-
tional settings. These cases are exemplified by concrete excerpts from these curricula. 
For reasons of space, we abstain from supplying further details of these programmes.
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Case 3: Mathematical modelling at Roskilde University

The modelling course BASE

Since 1972, when Roskilde University admitted its very first students, mathematical 
modelling has been a key component in the mathematics and science programmes 
at this university. Students’ independent construction of mathematical models in 
various domains of science, society, technology and culture, as well as their criti-
cal analysis of the foundation and properties of existing models, have been on the 
agenda of the programmes for almost half a century in a multitude of ways. The 
predominant avenue for students’ constructive and analytical modelling activities 
has always been problem-oriented project work, in which students in small groups 
(two to eight participants) work, under guidance by faculty supervisors, half of the 
time in a semester to pose and answer various questions in, about or by means of 
mathematical modelling (Blomhøj & Kjeldsen, 2011, 2018).

This is not the place to provide a comprehensive presentation of the place and 
role of modelling at Roskilde University with all its facets (for a general account 
of the Roskilde model, see Niss, 2001). Instead, we shall focus on one course on 
mathematical modelling that was given as an optional part of a special two-year 
programme across the sciences, which constituted the compulsory introduction to 
all studies in (natural) science and mathematics at Roskilde, until the university was 
forced to change its programmes to conform with the so-called Bologna structure 
of university studies in the European Union.

The course under consideration, BASE (a Danish acronym referring to basic 
analysis, simulation and experiments) was developed and first implemented in the 
academic years 1999–2000 and 2000–2001 and was offered for the last time in the 
academic year 2009–2010, when the study structure was fundamentally changed. 
BASE has been subject to presentations and analyses published in journal papers and 
book chapters, including Blomhøj et al. (2001), Ottesen (2001), and Blomhøj and 
Kjeldsen (2009). The exposition of BASE below is based on Blomhøj et al., (2001) 
and Blomhøj and Kjeldsen (2010). The modifications of the course during the 
remainder of its lifetime were marginal and will not be dealt with here.

The purpose of the course was stated as follows (Blomhøj et al., 2001, p. 11):

The course is meant to support the development of model[ling] competency 
with the students so that they become able to construct, apply, analyse and 
criticise mathematical models in simple problem situations.

(Our translation)

The target audience of the course consisted of newcomers to the science and 
mathematics studies at Roskilde University, especially students with relatively weak 
backgrounds in mathematics from upper secondary school. It also served the pur-
pose of supplying these students with upper secondary mathematical prerequisites 
cast in terms of mathematical models and modelling so that they could cope with 
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the general mathematical demands of studies in science and mathematics, which at 
the time included a compulsory course component in mathematics amounting to a 
fourth of the workload of one full year of study. In large part, the primary purpose 
of the course was to use modelling as a vehicle for learning mathematics needed for 
the study of science (and mathematics) at the university level, whereas mathemati-
cal modelling as an independent goal played a secondary yet still significant role. 
Even though BASE was optional, it was the recommended and obvious choice for 
students with a frail motivation for mathematical studies and a weak mathematics 
background. Students with a stronger mathematical background from upper sec-
ondary school were advised to take courses in linear algebra, in calculus and analysis, 
and in statistics, unless they explicitly wanted to revisit upper secondary mathemat-
ics from a models and modelling perspective.

The duration of the course was two semesters with two 3-hour sessions per 
week. The bulk of the course (roughly 75%) was devoted to students’ work on so-
called mini modelling projects, where groups of three to four students collaborated 
on constructing, analysing, interpreting and critiquing a mathematical model. The 
themes and topics of the mini-projects were given by the course directors, which 
was also the case with the written introduction to each project included in the notes 
for the course. Student groups’ written reports on their work were submitted to the 
course directors – who were also the teachers – for correction, commentary and 
assessment. Each student was involved in conducting 5–6 mini-projects throughout 
the course but also acted as a peer assessor of another 5–6 mini-projects done by 
fellow students, such that they became closely acquainted with a total of 10–12 such 
projects. The project groups decided themselves how to distribute the mini-projects 
among themselves, whereas the distribution of peer review assignments was decided 
by the teachers. One mini-project typically took 12 course hours plus 8–10 home-
work hours to complete.

In addition to project work, students also attended lectures and introductions to 
the mini-projects and to mathematical concepts and methods, including numerical 
methods, as part of the course. Moreover, students were given many exercises and 
problems focusing on mathematical topics pertaining to the themes under consid-
eration. The teaching materials were lecture notes written by the course directors 
themselves (Blomhøj et al., 2001a, 2001b).

Modelling situations in BASE

As mentioned, the modelling situations to be dealt with in the mini-projects were 
chosen and presented in written form by the course directors and were grouped 
into three parts. The first two parts, which were placed in the first of the two semes-
ters, focused on modelling by way of special functions (the first part), including 
linear functions, linear regression, exponential functions, and power functions as 
well as mathematical transformations of such functions, and (in the second part) on 
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modelling involving differential and integral calculus. In the first two parts of the 
course, students knew that they were supposed to make use of functional modelling, 
but usually it was not specified which particular functions from the upper second-
ary repository of functions might be relevant in the given context. The third part, 
which made up the entire second semester, dealt with modelling of dynamic phe-
nomena by means of differential equations, especially compartment modelling, and 
systems of differential equations, including phase-plane analysis of the properties of 
their solutions. The modelling situations were sequenced so as to involve progres-
sion such that both the level of the mathematics involved and the complexity of the 
modelling tasks increased throughout the course. Throughout the course, the tasks 
were designed and presented in such a way that students had to spend most of their 
time on mathematisation, mathematical treatment of the model obtained, as well 
as on de-mathematisation and on the basics of outcome validation. Less attention 
was supposed to be paid to other components of the modelling cycle, such as pre-
mathematisation and model evaluation. The course included an introduction to the 
relatively advanced digital software MatLab, which was meant to be useful for math-
ematical treatment in modelling contexts where the mathematical problems that 
arose could not be solved analytically but must be solved numerically. The modelling 
situations from which the mini-projects were to be conducted during the first two 
years of implementation of the course were the following; in the first semester, six 
modelling situations were on the agenda:

1 Monod’s growth chamber experiment,
• How does a bacterial strain grow?
• How does the activity of a cell depend on a ligand?

2 Metabolism and mass
• What is the relationship between metabolism and surface area of warm-

blooded animals?

3 Biological diversity and the size of an island
• What is the relationship between the number of animal species on an 

island and its size?

4 Systematic features of our planetary system
• What are the relationships between the distances of planets to the Sun, 

their place numbers and their orbitals?

5 The age of the Earth
• How old is the Earth?

6 “10 = 44” – a traffic speed campaign
• A traffic speed campaign claimed that if two cars driving next to each 

other in parallel lanes, one at a speed of 50 km/h, the other one at 60 
km/h, brake at the same time to avoid an object a small distance away in 
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front of them, the car at 50km/h can just manage to stop, whereas the 
other car will hit the object at a speed of 44 km/h. Is the claim in the 
campaign correct?

In the second semester, eight modelling situations were presented to the students:

1 Dramatic population growth
• What is the development of the world’s human population?

2 The cormorant population in Denmark
• What is the development of the Danish cormorant population?

3 Drug dosages
• What is a good medication plan for a person of 50 kg suffering from 

asthma?

4 Radio therapy against cancer tumours
• What should a dosage plan for radio therapy look like?

5 Anaesthesia
• How should anaesthetic drugs be dosed during a surgical operation?

6 Predator-prey systems
• What are the basic dynamics in the interplay between predator animals and 

their prey?

7 Modelling of the development of epidemics
• What governs the dynamics of an epidemic?

8 Modelling of gonorrhoea
• What governs the prevalence of gonorrhoea?

For each modelling situation, a written presentation of the background of the task 
(sometimes a rather lengthy one), together with specific information and numerical 
data, when relevant, was given to students. Also, the main questions to be answered 
in the mini-project were posed in the stimulus text, and typically a number of hints 
and scaffolding questions were offered.

The summative assessment criteria for the course had three components. The 
most important criterion was timely submission of all mini-project reports. Two 
15-minute individual oral interviews, one at the end of each semester, on two mini-
project reports drawn from the pool at random constituted the second and the third 
assessment component. Students received a “passed” or “failed” mark at the end 
of the course. In addition to this summative assessment, the teachers of the course 
provided formative feedback to students, both individually and in groups, at crucial 
points during the course, especially when giving feedback on completed mini-
project reports. This feedback was focused on assisting students in making progress 
in the remainder of the course.
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An example: modelling the CO2 balance of a lake

This example from a later version of the course, presented in Blomhøj and Kjeldsen 
(2010), deals with the way in which students’ work on a modelling problem in a 
mini-project served the purpose of paving the way for understanding the concept 
of the (definite and indefinite) integral and the fundamental theorem of calculus, 
i.e., the relationships between a function, its definite integral and its antiderivative, 
especially when the function designates the rate of change of another – initially 
unknown – function. Prior to the mini-project, the course directors had expe-
rienced a mismatch in students’ concept images of the antiderivative and of the 
definite integral, especially in settings where the function did not have an analyti-
cally well-defined anti-derivative. They wanted to counteract this mismatch in a 
modelling setting that called for numerical integration, that is, for reconstructing 
an unknown function by means of its known derivative, especially for functions 
initially defined only on a discrete set of points. The setting was the CO2 balance 
of a lake. In a lake, during the day plants use CO2 in the process of photosynthe-
sis, while they produce CO2 during the night. Animals in the lake produce CO2 

continuously due to respiration. Biologists are interested to know the net rate of 
change for such a lake during a 24-hour period. The students were given data 
representing the rate of change of CO2 (mmol/litre)/hour in the lake every 40 
minutes during 24 hours after dawn, corresponding to 36 data points. The initial 
value of the CO2 content at dawn was 2600 mmol. During the first 12 hours after 
dawn, the rates of change were all negative, whereas they were positive during the 
next 12 hours, and they were 0 at 12 and 24 hours after dawn.

The opening question given to students was: “What can be concluded from the 
data material about the sign of the rate of change of CO2 over the 24-hour period, 
and what information does that give about the life in the lake?”(p. 576). The teach-
ers supervising the groups and giving guidance along the road from time to time 
came up with auxiliary questions, for example:

When will the CO2 content be at its lowest, and how much CO2 will be in 
the water when that happens? Is the lake in equilibrium with regard to the 
CO2 content? How can this question be decided graphically? How much 
CO2 was released to the water during the 12 hours at night and how much 
was removed during the 12 hours of daytime?

(p. 577)

Students were led to answer these questions by numerical integration performed 
by hand, by way of MatLab or by using Excel. The teachers further made peda-
gogical observations during the process and concluded that despite several hurdles 
and challenges encountered on the way, students did indeed markedly develop and 
consolidate their concept of the integral and their understanding of the integral got 
connected to the definition of the concept. They also experienced the usefulness 
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of simple hands-on numerical integration (p. 579), even though they initially dis-
carded this as “childish”.

Final remarks

It is important to underline, once again, that the course BASE was never the only 
avenue for mathematical modelling in the mathematics and science programme at 
Roskilde University. Problem-oriented project work involving mathematical mod-
elling undertaken by small groups of students under guidance by faculty supervisors 
was always a key component of the programme. The purpose of such modelling 
activities is to foster modelling and modelling competencies as an independent goal 
rather than as a vehicle to other ends, such as learning mathematical concepts, meth-
ods and results. Even though, for structural reasons, BASE was withdrawn from 
the study programme in 2010, mathematical modelling activities continue to form 
a crucial part of the mathematics and science programme (Blomhøj & Kjeldsen, 
2018). Also, these modelling projects involve all the phases of the modelling cycle, 
not only those in focus in BASE.
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Case 4: Modelling in Australia – Queensland

Modelling in some Australian curricula

For several decades, states in Australia have paid varying amounts of attention to 
mathematical models and mathematical modelling in school curricula. Education 
in Australia is a state and territory issue rather than a national one, which means that 
there is considerable diversity across the country, even though there are tendencies 
towards an increased centralisation of curricula. Two Australian states have been 
protagonists in placing applied problem solving, models and modelling on their 
curricular agenda: Victoria and Queensland. A leading figure in this development 
is Peter L. Galbraith who for decades has been active in research and development 
in both states and has been a mentor for several Australian researchers in the field 
since the 1990s.

After some precursors a few years before, Victoria introduced applied prob-
lem solving and mathematical modelling into an innovative curriculum for upper 
secondary mathematics education already in 1988. Thus, in Victoria Board of 
Curriculum and Assessment (1988) one can read (quoted from Stillman, 2007, 
p. 498) about the incorporation of “problem solving and modelling activities 
[. . .] intended to provide students with experience in using their mathematical 
knowledge in creative ways to solve non-routine problems” (p. 24) and about the 
engagement of students in investigative projects such as “an extended mathematical 
modelling exercise to solve a real-world problem” (p. 27). This curriculum was first 
implemented in a few schools, but it was fully implemented in Victoria for year 
11 students in 1990 and for year 12 students in 1991 (Stephens & Money, 1993; 
Stillman, 2007). In the first years of implementation, the so-called CATs, Common 
Assessment Tasks, of this curriculum involved a marked component of problem 
solving and mathematical modelling. However, during the 1990s, this component 
became more and more reduced, a fact that entailed a reduced emphasis on model-
ling in Victorian upper secondary schools at large.

In Queensland, which is the focus of this case, applications, models, applied 
problem solving and modelling have a rather long and sustained history in math-
ematics education. As far as senior (upper) secondary curricula (years 11 and 12) 
are concerned, this development gained momentum after the introduction of senior 
secondary trial/pilot syllabuses in 1989 (Queensland Board of Senior Secondary 
School Studies, 1989a, 1989b) and the subsequent implementation of these in a 
limited number of trial/pilot schools from 1990–91 on (Stillman & Galbraith, 2009, 
2011). These curricula emphasised all the key aspects of mathematical modelling 
as manifested in the full modelling cycle. Even though the specific formulations 
adopted in curricula and syllabuses have changed over time, the spirit and thrust 
have remained stable since the early days.

Recently, Australia has become a key player in the International Mathematical 
Modelling Challenge for upper secondary students through The Australian Council 
for Educational Research (ACER) (for more details, see section 5.6), thus consolidat-
ing the long-established prominent role of mathematical modelling in the country.
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Modelling and assessment in Queensland

Until recently, Queensland was the only state in Australia in which assessment is 
entirely school based (Stillman & Galbraith, 2011). According to Stillman and Gal-
braith (2009):

The Queensland system of school based assessment means that the produc-
tion of assessment tasks and the award of levels of achievement is in the hands 
firstly of individual schools, with panels at district and state levels performing 
critical reviewing roles to assure comparability of outcomes across schools 
and regions. In keeping with the school based nature of the Queensland 
context, individual schools and teachers design individual work programs 
(including assessment tasks) under the syllabus umbrella. Hence a key element 
is the translation of the general objectives into specific criteria for the teach-
ing, learning, and assessment of school based activity.

(p. 517)

This means that to come closer to what actually happens in schools, it is necessary to 
zoom in on the workings and the tasks of the individual schools. Stillman and Gal-
braith (2009), in an empirical study of 23 teachers and “curriculum figures” from 
across the state, found quite a diversity of implementation across schools; they also 
found that even though teachers in general agreed that modelling was established 
in classrooms (op. cit., p. 520), several of them did not see a significant distinction 
between applications of mathematics and mathematical modelling. The study fur-
ther found that the role of the mediating panels mentioned in the quote above was 
to gradually and softly nudge schools and teachers to embrace all facets of math-
ematical modelling more fully.

To illustrate how one secondary school in Queensland, Ormiston College, inter-
preted and implemented the modelling parts of the curriculum, we present some 
examples of modelling assessment tasks given to students in this particular school 
under the leadership of Ian Thomson.

In 2011, year 12 students in Mathematics B: Extended Modelling and Problem 
Solving (the subject studied by students intending to undertake serious mathematics 
studies at the tertiary level; see Stillman & Galbraith, 2009, p. 516) were given two 
weeks to investigate, analyse and report on differences in daylight between Mel-
bourne and Brisbane, with a special emphasis on wintertime.

In 2013, year 12 students taking Mathematics B were presented with data about 
the braking and stopping of trains and cars and were asked to investigate a range of 
braking situations by way of mathematical modelling involving calculus.

In 2014, year 12 Mathematics B students were requested to make use of the 
so-called Lorenz Curve and the Gini Coefficient, as well of calculus, to investigate 
aspects of economic inequality in different countries.

In 2015, year 12 Mathematics B students were shown a video clip of a top basketball 
player with a remarkable record of achievement in accurate shots. Taking inspiration 
from the video, they were asked to investigate and model the trajectories of basketballs 
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in shots and explain why the player at issue had an advantageous technique. Here, too, 
two weeks were given to conduct the investigation and report the outcomes.

Mathematics C is the most challenging mathematics course offered to senior 
secondary students in Queensland. In 2015, the year 11 students in the school under 
consideration had to investigate and utilise methods of encryption and decoding to 
model secret codes in several specific examples.

In conformity with the official Queensland syllabus objectives, over the years the 
written reports of students in this school were assessed based on three categories 
of criteria: “knowledge and procedures”, “modelling and problem solving”, and 
“communication and justification”.

From 2019 onwards, Queensland, through its Queensland Curriculum and 
Assessment Authority (QCAA), implemented a new mathematics syllabus for 
senior (upper secondary) mathematics (www.qcaa.qld/edu.au/downloads/senior/). 
Mathematics is divided into four different subjects/courses: Essential Mathematics, 
General Mathematics, Mathematical Methods and Specialist Mathematics. A com-
pulsory summative external examination comprising 50% of the total assessment has 
been introduced for all four courses. In addition, each course involves a coursework-
based problem solving and modelling task worth 20% of the marks earned. The task 
has to include the following components, which also form the basis of the assessment 
described in an instrument-specific marking guide that teachers have to employ: 
Formulate (3–4 marks), Solve (6–7 marks), Evaluate and Verify (4–5 marks) and 
Communicate (3–4 marks). Examples given in this syllabus include: Make a recom-
mendation for the most appropriate type of water tank for installation in a house, 
considering the amount of collectable rainfall and water usage (Essential Mathe-
matics); investigate and compare students’ attitudes to environmental sustainability 
issues, including pollution, today and in the 1990s (General Mathematics); investigate 
motion sickness on a Ferris wheel using the vertical velocity and acceleration of a 
Ferris wheel car (Mathematical Methods); write a report showing how matrices can 
be used to predict the eventual winner of a competition (Specialist Mathematics).

It is interesting to note that modelling in Queensland is, to a large extent, fostered 
and promoted by the rules and criteria of assessment. By setting rather specific 
standards for problem solving and modelling tasks and the assessment of them, the 
curriculum authorities indirectly drive teachers to undertake mathematical model-
ling activities. In other words, this is an example of assessment driven curriculum reform 
pertaining to mathematical modelling.
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7.4 Modelling materials

This final section presents materials that have been developed for teaching units on 
mathematical modelling in school or university classrooms. We illustrate the first 
two cases (both for the secondary school level) by concrete examples contained in 
those materials.

Case 5: The Shell Centre at Nottingham University

The Shell Centre for Mathematical Education at Nottingham University, UK, was 
established in 1967. From its early days, it was committed to developing, testing and 
disseminating carefully produced and well-written teaching and learning materials 
for mathematics education, with a focus on applied mathematical problem solving 
and modelling, especially with regard to everyday problems of interest to primary 
and secondary school students. The materials consist of stimulus units and modules 
for teaching, student exploration, formative and summative assessment, as well as 
advice and guidelines for teachers. The modelling focus became particularly visible 
when Hugh Burkhardt (for more historical information, see Burkhardt, 2018) was 
appointed Director of the Centre in 1976 and was amplified when Malcolm Swan 
joined the Centre in 1979. This focus was further exacerbated in follow-up work 
to the highly influential so-called Cockcroft report (1982), which gave momentum 
to mathematics educators’ attention to the notion and significance of “numeracy” 
throughout the world. In section 5.6, we mentioned the Numeracy Through Problem 
Solving Series which came out in direct response to the Cockcroft report. Later, 
the Centre also took an interest in mathematical literacy as developed in PISA and 
elsewhere (Stacey & Turner, 2015)

The Centre, which celebrated its golden jubilee in 2017, is now part of the 
Centre for Research into Mathematics Education under the School of Education 
at Nottingham University, for which Geoff Wake is the current Centre Convenor. 
It continues to work along the lines mentioned, oftentimes in collaborative projects 
with parties in other countries and in recent years with particular emphasis on mate-
rials for assessment in mathematics in general and problem solving, modelling and 
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mathematical literacy in particular, as well as problem-based learning in science and 
mathematics. It is characteristic that faculty at the Centre have always accompanied 
their development work by theoretical and empirical research papers and books.

Among the materials and publications that had a major impact on the devel-
opment of mathematics teaching as well as on students’ learning activities were 
Problems With Patterns and Numbers (Shell Centre, 1984), presenting a rich variety of 
non-routine problem solving tasks for O-level (O standing for “ordinary”) students 
ages 13 to 16, most of which were designed as one- or two-week modules. The 
following year, the Centre published, again for 13- to 16-year-old students, The Lan-
guage of Functions and Graphs (Shell Centre, 1985) in two units, A and B, where Unit 
B was devoted to presenting a number of two-week modelling tasks involving func-
tions and graphs. In 1989, the Centre published the first edition of Extended Tasks for 
GSCE Mathematics (Shell Centre, 1989) for school-based assessment, in which the 
Teacher Guide sets the stage and provides the overall framework for the tasks. Many 
modelling examples can be found in the collection of lessons for grade 6 onwards 
produced in the Mathematics Assessment Project; see www.map.mathshell.org/les-
sons.php. All modules contain materials for teaching and for assessment. Most of 
the materials mentioned can be downloaded for free from the Centre’s webpage 
(www.mathshell.com) or can be obtained by writing to the Centre.

Particularly influential far beyond the British mathematics education scene was 
The Language of Functions and Graphs. Qualitative graphs like those in Figure 7.17 

FIGURE 7.17 Example from The Language of Functions and Graphs

http://www.map.mathshell.org
http://www.map.mathshell.org
http://www.mathshell.com
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were seldom found in any materials around the world before the Shell Centre 
published their units and presented the materials and experiences at international 
conferences.

Both the real-world interpretation of given qualitative graphs and the creation of 
such graphs to fit given real-world situations are now part of mathematics textbooks 
in many countries. The examples in this module cover a wide range of areas includ-
ing sports, camping, traffic, growth, tides and many others.
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Case 6: Best of Istron

The German Istron group

In section 5.6, the German Istron2 group was mentioned. This group was founded 
in 1991 with the aim of improving the teaching of mathematics at all school levels 
through the inclusion of connections to the real world. At that time, applications 
and modelling were seldom found in German mathematics classrooms, much 
more seldom than today where modelling is one of six mathematical competencies 
which, according to the German education standards, are compulsory for math-
ematics teaching and assessment from grade 1 on. The group consisted, from the 
beginning, of teachers and researchers in schools and universities in Germany and 
Austria who had the common intention of fostering the inclusion of mathemati-
cal modelling and applications of mathematics in everyday classrooms and in all 
kinds of assessment. At present, the group consists of around 70 people. There 
is no formal membership. The group is organised by two elected members and 
meets twice a year. Since 1997, once a year the meeting is combined with a whole-
day in-service teacher training event where Istron members offer various lectures 
and workshops on mathematical modelling for local teachers. These meetings and 
courses often take place in German or Austrian universities and are organised by 
local Istron members.



Cases of mathematical modelling 177

Another activity of the Istron group is the editing and publishing of a series of 
books for teachers under the title Materialien für einen realitätsbezogenen Mathema-
tikunterricht (Materials for Reality-Oriented Mathematics Teaching). The first volume 
was published in 1993; there are now 24 volumes, 18 of which were published by 
Franzbecker, whereas the last 6 ones, called Neue Materialien für . . . (New Materials 
for . . .), were published by Springer. All volumes contain articles presenting model-
ling examples and reports on classroom experiences with modelling. The articles 
are written for mathematics teachers as the audience, with the aim of supplying 
teachers with ideas and materials which they can directly use in their everyday 
teaching practice. Some of the volumes have an overarching topic such as the use 
of digital tools in modelling or modelling examples for the lower secondary level, 
but most volumes are just a collection of interesting reports from everyday practice 
of mathematics instruction in schools. The webpage www.istron.mathematik.uni-
wuerzburg.de/istron/index.html@p=1033.html contains the tables of contents of 
all Istron books as well as abstracts of all contributions. Nearly 300 articles have 
been published in this series.

The Best-of-Istron volume

On the twenty-fifth anniversary of the Istron group in 2016, the group decided 
to compose a book containing a “Best of ” selection of all 18 Istron books pub-
lished by Franzbecker. The criteria for selecting the articles for this volume were 
that these articles have, according to teachers’ reports, proven particularly useful 
in school practice and that the editors regard them as particularly typical of the 
“spirit” of Istron. Altogether, the modelling examples in these articles were to cover 
a sufficiently broad spectrum of school levels, mathematical topics and real-world 
contexts. In addition, the problem situations in these examples should still be rel-
evant in the contemporary real world (which would not, for instance, be the case 
with examples containing societal statistical data or newspaper articles from the 
1990s). Finally, 24 articles were selected plus an introductory theoretical contribu-
tion, altogether 25 chapters, a tribute to the anniversary. The authors were asked to 
slightly revise their articles by including recent experiences and/or by updating the 
problem situations. The book was eventually published in 2018 (Siller et al., 2018). 
In the following, we will briefly describe the content of this book.

The first chapter in the book (pp. 1–16) is the only one which was not selected 
from previous volumes but was written as a theoretical frame for the whole book. 
Werner Blum and Gabriele Kaiser, the two founders of the German Istron group, 
introduce theoretical approaches and empirical findings concerning mathematical 
modelling. Among other things, they discuss notions and aims of modelling as well 
as aspects of modelling competency, and they report on students’ cognitive barriers 
and on appropriate teacher interventions.

The other 24 articles in the book are ordered chronologically, according to their 
original publication date in one of the Istron books, beginning with Heinz Böer’s 
milk box example, published in 1993 in the first book of the series, and ending with 
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Hans-Stefan Siller’s and Jürgen Maaß’s sports bets example published in 2009 in 
the fifteenth book. We report here about the content of the book by grouping the 
articles according to the real-world contexts they deal with.

Most articles deal with the use of mathematics for understanding everyday sit-
uations. In the third chapter of the book (pp. 31–46), Michael Katzenbach asks 
whether families should travel to their holiday resorts by car or by train. The author 
developed a teaching unit for the lower secondary level (from grade 7 on) and 
reports on experiences with this unit. The mathematical models occurring in this 
example are mainly (stepwise) linear functions. Wilfried Herget analyses in the 
fourth chapter (pp. 47–68) various codes that are used to identify articles for sale, 
such as the ISBN or the GTIN (see Figure 7.18). The mathematics needed here is 
mostly elementary arithmetic including divisibility. The teaching unit developed by 
the author can be implemented from grade 6 on.

FIGURE 7.18 Example of a GTIN (Global Trade Item Number)

The eighth chapter in the book (pp. 111–124) deals with the question of what 
a positive result of an HIV/AIDS test means. Heinz Böer analyses the results of the 
underlying probabilistic models, which can be handled from grade 10 on. Regina 
Bruder presents, in the tenth chapter (pp. 133–144), various real-world situations 
within students’ horizon of experience, which can be described by mathemati-
cal means, such as wrapping of sweets, shapes of tents, measures of school gardens, 
garbage fees or food prices. The author suggests various problem-solving strate-
gies which can help develop students’ modelling competencies. Hans Humenberger 
offers in the twelfth chapter (pp. 161–176) an elementary explanation of the so-
called “Benford law”. This law states that the first digit in numbers occurring 
in natural contexts (such as half-lives of radioactive substances, distances between 
places, measures of natural phenomena or numbers in tax declarations) is not uni-
formly distributed across 1, 2, . . . , 9 but these figures occur with decreasing 
frequencies. These empirical frequencies can be described amazingly well by cer-
tain logarithms (see Figure 7.19a).

An introduction to the concept of function in grade 7 by means of authentic 
diagrams is the topic of the fourteenth chapter (pp. 193–200). Johannes Schornstein 
reports on his own experiences as a teacher when using diagrams for the climate in a 
museum, the speed of a truck (see Figure 7.19b), the water consumption in a city or 



FIGURE 7.19a  (top). Frequencies of first digit in a Google experiment (right columns) 
and according to Benford’s law (left columns) 

FIGURE 7.19b  (bottom). Tachograph of a truck
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the train timetable in a region. In the next chapter (pp. 201–230), Henning Körner 
presents teaching units in which students have discovered exponential functions 
for describing various real-world phenomena such as games, leading to geometric 
sequences, cooling of coffee, concentration of drugs in the blood, flow of liquids, 
the world population or the capacity of wind energy. The author concludes with 
the remark that, according to his experiences as a teacher, it is certainly possible to 
include modelling in everyday teaching. In the seventeenth chapter (pp. 245–260), 
Hans-Wolfgang Henn explains the everyday phenomenon of rainbows. The corre-
sponding mathematical models, based on some physics such as the fraction of light, 
use real functions involving inverse trigonometric functions (see Figure 7.20). Since 
derivatives are needed for determining the maxima of these functions, this example 
is suited for the upper secondary level only.

Wilfried Herget and Dietmar Scholz analyse, in the nineteenth chapter (pp. 269–
283), many mathematical aspects pertaining to newspapers. In particular, they have 
found many model mistakes in newspaper articles. The examples range from toilet 
paper over withers of calves, amount of precipitation, income of soccer stars and 
alcohol in the blood to education expenditure in Germany. In the twenty-first 
chapter (pp. 293–301), Gilbert Greefrath presents mathematical models of the fill-
ing of a home oil tank. The starting point is a newspaper article about fraud in 
the context of oil filling, and the aim of the teaching unit presented is to find 
ways of discovering such fraud by means of mathematics. In the following article 
(pp. 303–317), Timo Leuders deals with the question of why and how a dog seems 
to use the quickest path when it must bring back an object thrown into the water. 
The mathematical problem is the same kind of optimisation problem as is involved 
in understanding the paths of light beams.

Another group of articles consists of examples showing actual uses of mathemat-
ics in professional contexts. The second chapter in the book (pp. 17–30) contains one 
of the most classic Istron examples, the milk box, written by Heinz Böer. The ques-
tion is which measures a one litre milk box, shaped as a right-angled parallelepiped 
with quadratic cross section and fulfilling certain practical requirements, must have 
if the consumption of surface material is to be minimal (see Figure 7.21). The cor-
responding mathematical model is a certain rational function which can be best 
analysed with mathematical tools from calculus, so the example is primarily suited 
for the upper secondary level. It turns out that the solution of this optimisation 
problem is very close to the measures of the milk box actually used in Germany. 
With this example, Böer won a modelling challenge in the early 1990s tendered by 
COMAP.

In the thirteenth chapter (pp. 177–191), Jörg Meyer analyses and clarifies some 
seeming paradoxes of descriptive statistics, which occur in the context of elections 
or school marks. The problems comprise questions such as what a majority vote, 
or the relation “better than”, could mean. Also, the famous Simpson paradox, con-
cerning the possible vanishing of sub-population trends under whole population 
aggregation, is discussed. Reinhard Oldenburg presents, in the sixteenth chapter 
(pp. 231–243), the mathematics of image processing. The mathematical topics 



FIGURE 7.20 Rainbows and explanation of the main bow by means of third order beams
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FIGURE 7.21 The surface of a milk box

involved include statistics, functions, geometric transformations and matrices, all of 
which are accessible at the upper secondary level. The final example uses Fourier 
transformations and exceeds the normal level of school mathematics. In the twenty-
third chapter (pp. 319–330), Frank Förster presents the problem of determining the 
length of a cable wound around a drum with given measures. This problem is dealt 
with separately in the “cable drum” case in this chapter. In the next contribution 
(pp. 331–342), Christoph Ableitinger, Simone Göttlich and Thorsten Sickenberger 
deal with the problem of overbooking flights, using authentic data from an Austrian 
airline. The mathematical model is essentially a linear function of several variables, 
and the task is to find its maxima under certain constraints. The authors report on 
experiences with upper secondary students.

Yet another group of contributions is devoted to mathematical models in the 
context of cars and traffic. One instance is found in the fifth chapter in the book 
(pp. 69–78). Ingo Weidig analyses the mathematics behind the construction of 
mountain tracks for trains and presents a teaching unit for the lower secondary 
level with an existing track in the German Black Forest as an authentic example 
(see Figure 7.22). The mathematics involved includes percentages and elementary 
geometry up to circles.
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The ninth chapter (pp. 125–132) by Thomas Jahnke models the number of 
people in a traffic jam. The teaching unit developed by the author needs only 
elementary arithmetic and can be treated at the primary level already. In contrast, 
Hans-Wolfgang Henn, in the eleventh chapter (pp. 145–160), uses derivatives 
for determining speed and acceleration of a car and integrals for reconstructing 
speed from acceleration and distance from speed. This is suited for the upper 
secondary level in Germany. In the introductory teaching unit of calculus pre-
sented by the author, real data from a Porsche are used. In the eighteenth chapter 
(pp. 261–267), Jürgen Maaß presents a unit in which students in grade 9/10 
developed a “radar speed trap”. The core of the unit is students’ own speed mea-
surements, based on the usual formula for average speed. The twentieth chapter 
(pp. 285–292) contains a modelling project for the lower secondary level that 
the author, Katja Maaß, has developed and carried out in her own classes. The 
students were to determine the amount of paint needed to paint a Porsche. This 
problem is presented in more detail in the “Surface of a Porsche” case in this 
chapter.

Mathematical modelling in sports is a focus of three contributions in the book. 
Peter Bender analyses in the sixth chapter (pp. 79–96) the geometrical nature of 
soccer balls (see Figure 7.23), which in some versions are certain Archimedian poly-
hedra. The author shows how conditions of production influence the design of 
such balls.

FIGURE 7.22 The track of the Wutachtal train in Germany

FIGURE 7.23 Soccer balls
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In the next chapter (pp. 97–109), Peter Bardy presents mathematical models 
of shot putting. An elementary quadratic model produces results which are too 
far away from real data, so the author constructs a more elaborate model consist-
ing of a system of two differential equations, which has interesting consequences 
for the practice of shot putting. The twenty-fifth and final chapter in the book 
(pp. 343–356) has sports bets as its subject. Hans-Stefan Siller and Jürgen Maaß 
present a project in which students developed a model for bets on soccer matches. 
The mathematical content consists of percentages, proportions and elementary 
probability.

Altogether, the 25 contributions do indeed cover a broad spectrum of real-world 
contexts and mathematical topics. Teachers who can read German will find many 
sources for involving their students in genuine modelling activities.

Reference

Siller, H.-S., Greefrath, G. & Blum, W. (Eds.) (2018). Neue Materialien für einen realitätsbezogenen 
Mathematikunterricht 4. 25 Jahre ISTR ON-Gruppe – eine Best-of-Auswahl aus der ISTR ON-
Schriftenreihe. Wiesbaden: Springer Spektrum.

Case 7: COMAP’s Mathematics: Modeling Our World

In Chapter 4, we introduced the non-profit organisation Consortium for Math-
ematics and Its Applications, COMAP, established in 1980, as a protagonist in 
furthering applications, models and modelling in mathematics education in the 
USA. In this chapter, we zoom in on one of their many contributions to this area 
as a case in point. COMAP founded the so-called ARISE project (Application 
Reform in Secondary Education) in 1992 and obtained funding of it from the US 
National Science Foundation. The main offspring of the project was a four-volume 
set of curriculum materials for upper secondary education, Mathematics: Modeling 
Our World, consisting of textbooks and activities for students accompanied by com-
mentaries and guidelines for teachers. The project was led by COMAP founder and 
director Solomon Garfunkel, high school teacher Landy Godbold and Columbia 
University professor Henry Pollak. The authorship of the four volumes was in the 
hands of modelling specialists, mathematics educators and high-profile practising 
high school mathematics teachers. The first book came out in 1998, published by 
South-Western Educational Publishing. The current – second – edition is published 
by COMAP itself (COMAP, 2000, 2010, 2011, 2013).

In the introduction to the material in the first volume, Sol Garfunkel wrote the 
following programmatic statement about ARISE (COMAP, 1998, T1):

The result of these labors is Mathematics: Modeling Our World. In the COMAP 
Spirit, Mathematics: Modeling our World develops mathematical concepts in the 
contexts in which they are actually used. The word “modeling” is the key. 



Cases of mathematical modelling 185

Real problems do not come at the end of chapters. Real problems don’t look 
like mathematics problems. Real problems are messy. Real problems ask ques-
tions such as: How do we create computer animation? How do we effectively 
control an animal population? What is the best location of a fire station? 
What do we mean by “best”?

In this statement, mathematical concepts are justified by and arise out of attempts 
to model extra-mathematical problem situations. In other words, the statement 
insists on perceiving, in one grip, the whole rationale of the endeavour as “model-
ling for the sake of mathematics for the sake of modelling”. This is indeed reflected 
in the structure and organisation of each of the four volumes, albeit less so in the 
fourth volume on pre-calculus. Each chapter in each book (again with a slight 
exception in the fourth volume; see below) is devoted to an extra-mathematical 
theme lending itself to mathematical modelling. The theme is being presented 
stepwise in a number (between two or six) of “lessons”, each of which is supposed 
to be dealt with in up to six days of work. For each lesson, the material stipulates 
special “activities” and “individual work” for students to be undertaken during 
the lesson. The lessons in a chapter are concluded with one to two days of chapter 
review activities. The chapter finally contains a mathematical summary, a glos-
sary (in the first two volumes) and a recommended “chapter project” in the first 
volume.

The eight chapters and corresponding lessons of the first volume (2nd edition) 
are the following:

1 Pick a Winner: Decision Making in a Democracy (Two current Election Models; 
Two Alternative Election Models; Chapter Project: Point Models);

2 Secret Codes and the Power of Algebra (Keeping Secrets, UGETGV EQFGU; 
Decoding; Cracking Codes; Illusive Codes; Matrix Methods; Chapter Project: 
Designing a Model for Coding);

3 Scene From Above (Changing Times; It’s All a Matter of Scale; Shape, Size, and Area; 
Areas of Irregular-Shaped Regions; Chapter Project: San Francisco Wetlands);

4 Prediction (The Hip Bone’s Connected; Variability; Linear Regression; Selecting 
and Refining Models; Chapter Project: Let the Bones Speak!);

5 Animation/Special Effects (Get Moving; Get to the Point, Escalating Motion; 
Calculator Animation; Fireworks; Chapter Project: Calculator Animation);

6 Wildlife (First Steps, First Moose Model; Multiplicative Growth; Second 
Moose Model; Final Moose Model; Chapter Project: Funding a College 
Education);

7 Imperfect Testing (A Sporting Chance; On One Condition; Nobody’s Perfect; 
But I didn’t Do It! Really!; Chapter Project: Failing Twice); and

8 Testing 1, 2, 3 (Steroid Testing; Testing Models; Confirming the Model; Solving 
the Model: Tables and Graphs, Solving the Model: Symbolic Methods; Chapter 
Project: Pooling Three Samples).
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The seven chapters and corresponding lessons of the second volume (2nd edition) 
are the following:

1 Gridville (In Case of Fire, Linear Village; Absolute Value; Minimax Village; 
Return to Gridville);

2 Strategies (Decisions; Changing Your Strategy; Changing the Payoffs; Optimal 
Strategies; Optimal Strategies Revisited; Games That Are Not Zero Sum);

3 Hidden Connections (Connections; Procedures; Minimum Spanning Tree 
Algorithms; Coloring to Avoid Conflicts; Traveling Salesperson Problems; 
Matching);

4 The Right Stuff (Packing Models, Designing a Package; Technological Solutions; 
Getting the Facts; Packaging Spheres);

5 Proximity (Colorado Needs Rain! Neighborhoods; Rainfall; A Method of a 
Different Color; Digging for Answers);

6 Growth (Growing Concerns; Double Trouble; Finding Time; Sum Kind of 
Growth; Mixed Growth); and

7 Motion (Learning Your Lines; Falling in Line; It Feels Like Fall; What Goes Up 
Must Come Down; The Grand Finale).

The third volume (2nd edition), too, contains seven chapters with corresponding 
lessons as follows:

1 The Geometry of Art (Keep It In Perspective; Drawn to Scale; Vanishing Point; 
The Right Space; The View From the Edge; Foreshortening);

2 Fairness and Apportionment (Heir Today, Gone Tomorrow; More Estate Divi-
sion; Apportionment: The Unfairness of Fairness; Other Methods; Measuring 
Unfairness);

3 Sampling (It’s All In the Question; Experience Counts; Say It With Confidence!; 
Selective Service; The Results Are In! Tag, You’re It!);

4 Mind Your Own Business (So, You Want to Be in Business; Who’s Minding the 
Store(room)?; Changing Assumptions; Slow Growth);

5 Oscillation (Life’s Ups and Downs; A Sine of the Times; Connections; Fade Out; 
Now We’re in Cookin’);

6 Feedback (What Lies Ahead; Another Model; It’s Going Around; An Ecological 
PushMe-PullYou); and

7 Modeling Your World (The Modeling Process; Analyzing Mathematical Models; 
Modeling Our World; Creating Your Model).

The fourth and final volume, titled Pre-Calculus (1st Edition), contains eight chap-
ters and corresponding lessons as follows:

1 Functions in Modeling (A Theory-Driven Model; Building a Tool Kit of Func-
tions; Expanding the Tool Kit of Functions; Transformations of Functions; 
Operations on Functions);
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2 The Exponential and Logarithmic Functions (Exponential Functions, Logarithmic 
Scale; Changing Bases; Logarithmic Functions; Modeling With Exponential 
and Logarithmic Functions; Composition and Inverses of Functions);

3 Polynomial Models (Modeling Falling Objects; The Merits of Polynomial Mod-
els; The Power of Polynomials; Zeroing in on Polynomials; Polynomial Divi-
sions; Polynomial Approximations);

4 Coordinate Systems and Vectors (Polar Coordinates; Polar Form of Complex 
Numbers; The Geometry of Vectors; The Algebra of Vectors; Vector Equations 
in Two Dimensions; Vector Equations in Three Dimensions);

5 Matrices (Matrix Basics; The Multiplicative Inverse; Systems of Equations in 
Three Variables);

6 Analytic Geometry (Analytic Geometry and Loci: Modeling with Circles; Mod-
eling with Parabolas; Modeling with Ellipses; Modeling the Hyperbolas);

7 Counting and the Binomial Theorem (Counting Basics; Compound Events; The 
Binomial Theorem); and

8 Modeling Change With Discrete Dynamical Systems (Modeling Change with 
Difference Equations; Approximating Change with Difference Equations; 
Numerical Solutions; Systems of Difference Equations).

The first three volumes are structured with extra-mathematical themes as the 
organising principle, whereas mathematical topics constitute the main organising 
principle in the fourth volume, which is because this book, by dealing with pre-
calculus, delivers some degree of standard preparation for college studies for students 
in the last year of high school while still giving a prominent role to modelling situ-
ations and issues whenever possible.

In principle, the four books address the four years of high school in the USA 
at large. However, the project directors did not write and produce them with the 
primary aim of achieving high sales rates, and presumably they never expected them 
to be widely used in American high schools. Rather, they were produced as an exis-
tence proof of the possibility of actually basing an entire high school mathematics 
curriculum, covering all relevant mathematical topics, on the modelling of extra-
mathematical situations. As expected, the books did not reach high sales – they were 
primarily adopted by schools in New York, Minnesota and Ohio. However, they are 
widely consulted as inspiration materials by teachers who teach according to more 
traditional materials. This is analogous to the fact that certain books in literary fic-
tion and poetry that never reached a wide readership are, nevertheless, significant 
because they are reference works and provide inspiration to writers and poets in 
their own work.

Notes

1 Model M1a can easily be generalised from the special cable drum in figure 7.1 by using 
variables L, R1, R2 and r instead of concrete quantities, and the same is possible for the other 
models. The radii in model M1a are R2 + (2i – 1)r for i = 1, . . ., n where n is the number of 
layers fitting on the drum, that is, the largest integer below (R1 – R2 ): 2r. In each layer, there 
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are m cable pieces next to one another where m is the largest integer below L:2r. So the 
total length of all m · n pieces is:

C = Σm · 2π · (R2 + (2i – 1 )r) = 2πm · (nR2 + r · Σ(2i – 1 )) = 2πm · (nR2 + n² · r)  
 = 2πmn · (R2 + nr)

 since the sum of all odd numbers up to 2n – 1 is n².
2 The German Istron group was founded as part of an international network. The idea of 

this network was born at a meeting of a small international group in 1990 in the Istron 
Bay Hotel on Crete, Greece, hence the name of the group. The two authors of this book 
took part in this meeting.
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8.1 The focal points and contributions of this book

One of the major ambitions for this book has been to provide the reader with 
a coherent up-to-date conceptual and theoretical framework about mathematical 
modelling in mathematics education. This means that the overarching focus has been 
the process of constructing and using mathematical models of extra-mathematical 
contexts and situations, in the context of teaching and learning of mathematics. 
Even though much of what has been said in the previous chapters pertains to all 
levels of mathematics education, from primary to tertiary, particular attention has 
been paid to school mathematics (ages 7–18), especially at the secondary level.

Against this background, we have offered (in Chapter 2) an extensive treatment 
of the fundamental general notions of “model” and “modelling” – descriptive and 
prescriptive. These are accompanied by a detailed exposition of seven modelling 
examples (Chapter 3), each of which is accessible at some level of school mathemat-
ics. This provided the platform for an analysis of the cognitive demands involved in 
undertaking mathematical modelling (section 2.6) and of what has become known 
under the heading of mathematical modelling competency and (sub-)competencies 
(Chapter 4). The possible places and roles of mathematical modelling in the educa-
tion system, especially in schools, were discussed in Chapter 2 (section 2.8), also 
including a historical perspective (section 2.7). The most significant challenges to 
the implementation of modelling in the teaching and learning of mathematics were 
charted and analysed in Chapter 5.

An extensive account of empirical research on a multitude of aspects of what 
might be termed “the didactics of mathematical modelling” formed the core of 
Chapter 6, while a description and analysis of a number of selected cases of imple-
mentation of different sorts and at different levels was given in Chapter 7. In the 
next section, we shall take a retrospective look at key elements of what constitutes 

8
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state-of-the-art knowledge and insights concerning mathematical modelling in 
mathematics education, thus summarising what was written in previous chapters.

8.2  What do we know from research and development, 
and what are we able to do?

First, it is important to note that the field is well under way in establishing a 
conceptual framework and a corresponding terminology about the didactics of 
mathematical modelling. Essential components of this framework are the very 
notions of model and modelling. Another key component is the modelling process, 
represented diagrammatically by various versions of the modelling cycle. This is 
to be understood as an analytic reconstruction of the steps necessarily involved in 
constructing a mathematical model but not as a depiction of the actual actions that 
a modeller must or will go through in any given modelling context. Further crucial 
components are: modelling competency and (sub-)competencies; model-eliciting 
activities; descriptive and prescriptive modelling; emergent modelling; modelling as 
a vehicle for other purposes versus modelling as a goal of mathematics education in 
its own right; and holistic versus atomistic approaches to the teaching and learning 
of modelling. While there exists no unified, universally agreed-upon conceptual 
and terminological framework with fixed definitions for the modelling discourse, 
there is, after all, a degree of consensus about these matters. This suffices for pro-
ductive investigations and discussions to be undertaken across different quarters and 
groupings within the international mathematics education community.

Next, we know that the ability to successfully carry out mathematical mod-
elling is by no means an automatic consequence of possessing a high level of 
intra-mathematical competencies, skills and knowledge. This implies that mathe-
matical modelling must be learnt. Furthermore, the ability to perform mathematical 
modelling requires a minimum of mathematical knowledge and competence, but 
some students are able to successfully engage in modelling on a relatively sparse 
mathematical base. Fortunately, we also know from research and practice that math-
ematical modelling can be learnt as a result of high-quality goal-oriented teaching 
within carefully designed teaching-learning environments with sufficient structures, 
amounts of time and other resources made available to students and teachers. It is 
unlikely that modelling will be learnt by more than a few students if the education 
system is unable or unwilling to pay the necessary material and immaterial costs.

In this context, research has taught us quite a lot about why learning to model 
is demanding and difficult. We now know what it takes for students to successfully 
learn to model, as well as what barriers and obstacles exist to this endeavour. This 
has been studied from the perspectives of cognition, affect and beliefs about math-
ematics (see Chapters 5 and 6). We know that it takes a sustained and systematic 
effort over a long period of time to teach students to model. We also know that 
the conditions for achieving this may conflict with educational traditions, habits 
and conceptions. Learning to model does not fit the usual didactical contracts and 
socio-mathematical norms in mathematics classrooms, particularly those widespread 
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conceptions of mathematics teaching focusing on training students to solve tasks of 
an algorithmic type which subsequently constitute the core of summative assess-
ment and examinations. Last but certainly not least, we know that although the 
mathematics teacher is always a decisive factor in students’ learning of mathematics, 
this is even truer as far as mathematical modelling is concerned. The teacher must 
be able and willing to leave his or her own comfort zone and, together with his or 
her students, to enter unexplored domains.

Regarding the role of digital technologies and tools in mathematical modelling 
(see section 5.7), we know from research and practice that such tools can greatly 
enhance the range and quality of many kinds of modelling activities in mathematics 
education. However, the use of the very same piece of technology can lead to mar-
vels as well as disasters, depending on the didactico-pedagogical thinking and work 
of the teacher. The successful use of digital tools in modelling requires carefully 
designed and implemented modelling tasks and environments in which the division 
of labour between technology-based and other mathematical work is carefully bal-
anced. We also know that digital tools can in no way replace modelling competency 
or (sub-)competencies. On the contrary, the stronger the tools, the stronger the 
need for modelling competency and mathematical competence at large.

When examining the extent to which students have successfully dealt with a 
given modelling task or made progress in developing their modelling competency, 
we must make use of a range of appropriate assessment modes and instruments 
(see section 5.6). During the last three decades, remarkable progress has been made 
in developing such modes and instruments and in putting them to use in special 
educational settings. However, as the use of these is demanding and time consum-
ing, it has proved difficult to implement them in “ordinary” educational settings, 
especially on a large scale such as national or state-based assessments.

Finally, it is evident that the manifest inclusion of mathematical modelling in the 
curricula and practices of mathematics education is much more prevalent in some 
countries and places than in others. Countries such as Australia, Brazil, Denmark, 
Germany, the Netherlands, Spain, Sweden and the UK are (or were) protagonists 
in the field, but there are also active groups in countries such as Austria, China, 
Japan, Mexico, Portugal, Singapore, South Africa, and the USA. There are individual 
people and institutions in every country around the world who are “activists” of 
mathematical modelling in a concerted manner, but in several places their role in 
this respect is of a rather singular nature. The most remarkable thing is that despite 
all the progress reported here, most countries in the world do not pay particular 
attention to mathematical modelling in mathematics education.

8.3 What do we want to know and be able to do?

In the preceding section, we offered a brief general outline of what has been 
achieved so far in the didactics of mathematical modelling. In this section, we shall 
attempt to take stock of what we would further like to know, understand and be 
able to do in the future.



192 Focal points for the future

Let us begin by reiterating that mathematical modelling is difficult, demand-
ing and time consuming and that the ability to undertake it successfully can 
only by developed and consolidated by doing it in wide variety of contexts 
and situations. This suggests that mathematical modelling is highly situated 
and dependent of the specific boundary conditions and circumstances of the 
individual modelling situation. This gives rise to the following overarching 
question (addressed in section 5.1): Knowing that it is possible to learn to model 
in some contexts and situations, to what extent is it possible for an individual to 
acquire a general modelling ability that goes across and beyond a multitude of 
diverse disciplines and fields of practice without having been trained to model 
in every one of these disciplines or fields? Or, differently put, to what extent 
can modelling abilities developed within some domains be transferred to and 
be activated in completely different domains? This question is related to several 
further questions: To what extent is a student’s specific knowledge about a given 
extra-mathematical domain decisive for the student’s ability to undertake mod-
elling with regard to that domain? Are there characteristic differences in this 
respect among different extra-mathematical domains, such that some domains 
require more or deeper substantive knowledge and insights than do others? 
What is the impact of students’ specific knowledge of and interest in given 
modelling contexts and situations for their willingness and ability to learn to 
model more broadly? We have germs of answers to these questions but nothing 
like complete answers.

This is also true of another related question. We know that it is often very dif-
ficult for students to recognise and utilise structural equivalence of models and 
modelling situations pertaining to different extra-mathematical contexts, even if 
they themselves have had modelling experiences from one or more of these con-
texts. So what does it take for students to become able to recognise and utilise such 
structural equivalences so as to transfer these experiences to new domains, contexts 
and situations? How can we foster and further this ability?

The finding that it is (sometimes) possible for students to learn to model relies 
on a number of successful teaching/learning cases, some of which are reported 
in the modelling literature and in Chapter 7. Just as in mathematics education at 
large, there is ample evidence that transplanting examples that proved successful 
in one environment and setting to new ones only seldom engenders the same 
degree of success as in the original case. How can we characterise successful 
instructional examples to uncover the conditions, factors and causes for the suc-
cess observed, in the hope that (some of ) these may be generalised, transferred 
and scaled to entirely new settings and circumstances? What transformations, 
transpositions and other measures can be made to successful cases to ensure new 
successes?

Moreover, even though we have several examples of successful instructional 
sequences in which students learnt to model to a satisfactory degree, we have virtu-
ally no studies that allow us to assess the long-term effect, over several months or 
years, of the learning that took place in such sequences. We badly need such long-
term studies.
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Finally, we want to know much more about the interrelationships and depen-
dencies between, on the one hand, modelling competency and (sub-)competencies 
and, on the other hand, intra-mathematical knowledge and competencies. This is a 
huge question, the robust answers to which will have wide-ranging consequences 
not only for the future destiny of mathematical modelling in mathematics educa-
tion but also for mathematics education at large.

8.4 Challenges for the future

The Discussion Document for the 14th ICMI Study on Applications and Model-
ling in Mathematics Education (Blum et al., 2002) listed a number of issues, which 
the ICMI Study attempted to address. The ones that specifically pertain to math-
ematical modelling, rather than to the field at large, asked the following questions:

To what extent is applications and modelling competency transferable across 
areas and contexts? What teaching/learning experiences are needed or suit-
able to foster such transferability?

(p. 155)

What does research have to tell us about the significance of authenticity to 
students’ acquisition and development of modelling competency?

(p. 160)

How can modelling ability and modelling competency be characterised, and 
how can it be developed over time?

(p. 160)

How can modelling in pre-service and in-service education be promoted?
(p. 161)

What would be an appropriate balance – terms of attention, time and effort – 
between applications and modelling activities and other mathematical activi-
ties in mathematics classrooms at different educational levels?

(p. 162)

What are appropriate pedagogical principles and strategies for the develop-
ment of applications and modelling courses and their teaching? Are there 
different principles and strategies for different educational levels?

(p. 164)

What alternative assessment modes are available to teachers, institutions and 
educational systems that can capture the essential components of modelling 
competency, and what are the obstacles to their implementation?

(p. 165)

How should technology be used at different educational levels to effectively 
develop students’ modelling abilities and to enrich students’ experience of 
open-ended mathematical situations in applications and modelling?

(p. 167)
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These questions are stated in a very general form that, if taken at face value, call 
for final and exhaustive answers that leave nothing to be desired. The questions 
represent “demands at infinity”. It doesn’t make sense to ask, “[W]hat proportion 
of the distance to infinity is now being covered by progress in research and devel-
opment since the publication in 2002 of the Discussion Document for the ICMI 
Study?” However, revisiting these issues today allows us to claim that, as shown in 
the chapters of this book, remarkable albeit varying progress has indeed been made 
with regard to all the issues cited. At the same time, these issues constitute ongoing 
challenges for research and development in mathematics education in the future.
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