
Chapter 3

Parallel Algorithm Design

Outline

 Task/channel model

 Algorithm design methodology

 Case studies

Task/Channel Model

 Parallel computation = set of tasks

 Task

Program

Local memory

Collection of I/O ports

 Tasks interact by sending messages through

channels

Task/Channel Model

Task
Channel

Foster’s Design Methodology

 Partitioning

 Communication

 Agglomeration

 Mapping

Foster’s Methodology

Problem
Partitioning

Communication

AgglomerationMapping

Partitioning
 Dividing computation and data into pieces

 Domain decomposition

 Divide data into pieces

 e.g., An array into sub-arrays (reduction); A loop
into sub-loops (matrix multiplication), A search

space into sub-spaces (chess)

 Determine how to associate computations with
the data

 Functional decomposition

 Divide computation into pieces
 e.g., pipelines (floating point multiplication), workflows

(pay roll processing)

 Determine how to associate data with the
computations

Example Domain Decompositions

Example Functional Decomposition

Partitioning Checklist

 Large Grained Tasks

e.g, at least 10x more primitive tasks than
processors in target computer

 Balance Load

Primitive tasks roughly the same size

 Scalable

Number of tasks an increasing function of
problem size

Communication

 Determine values passed among tasks

 Local communication

 Task needs values from a small number of
other tasks

 Create channels illustrating data flow

 Global communication

 Significant number of tasks contribute data to
perform a computation

 Don’t create channels for them early in design

Communication Checklist

 Balanced

 Communication operations balanced among
tasks

 Small degree:

 Each task communicates with only small group
of neighbors

 Concurrency

 Tasks can perform communications
concurrently

 Task can perform computations concurrently

Agglomeration

 Grouping tasks into larger tasks

 Goals

 Improve performance

Maintain scalability of program

Simplify programming

 In MPI programming, goal often to create

one agglomerated task per processor

Agglomeration Can Improve

Performance

 Eliminate communication between

primitive tasks agglomerated into

consolidated task

 Combine groups of sending and receiving

tasks

Agglomeration Checklist

 Locality of parallel algorithm has increased

 Tradeoff between agglomeration and code

modifications costs is reasonables

 Agglomerated tasks have similar computational

and communications costs

 Number of tasks increases with problem size

 Number of tasks suitable for likely target systems

Mapping

 Process of assigning tasks to processors

 Centralized multiprocessor: mapping done
by operating system

 Distributed memory system: mapping done
by user

 Conflicting goals of mapping

Maximize processor utilization

Minimize interprocessor communication

Mapping Example

Optimal Mapping

 Finding optimal mapping is NP-hard

 Must rely on heuristics

Mapping Decision Tree

 Static number of tasks

 Structured communication

 Constant computation time per task

• Agglomerate tasks to minimize comm

• Create one task per processor

 Variable computation time per task

• Cyclically map tasks to processors

 Unstructured communication

• Use a static load balancing algorithm

 Dynamic number of tasks

Mapping Strategy

 Static number of tasks

 Dynamic number of tasks

Use a run-time task-scheduling algorithm

• e.g., a master slave strategy

 Use a dynamic load balancing algorithm

• e.g., share load among neighboring

processors; remapping periodically

Mapping Checklist

 Considered designs based on one task per
processor and multiple tasks per processor

 If multiple task per processor chosen,
ratio of tasks to processors is at least 10:1

 Evaluated static and dynamic task allocation

 If dynamic task allocation chosen, task
allocator is not a bottleneck to performance

Case Studies

 Boundary value problem

 Finding the maximum

 The n-body problem

 Adding data input

Boundary Value Problem

Ice water Rod Insulation

Rod Cools as Time Progresses

Finite Difference Approximation

Partitioning

 One data item per grid point

 Associate one primitive task with each grid

point

 Two-dimensional domain decomposition

Communication

 Identify communication pattern between

primitive tasks

 Each interior primitive task has three

incoming and three outgoing channels

Agglomeration and Mapping

Agglomeration

Sequential execution time

 – time to update element

 n – number of elements

 m – number of iterations

 Sequential execution time: mn

Parallel Execution Time

 p – number of processors

 – message latency

 Parallel execution time m(n/p+2)

Finding the Maximum Error

Computed 0.15 0.16 0.16 0.19

Correct 0.15 0.16 0.17 0.18

Error (%) 0.00% 0.00% 6.25% 5.26%

6.25%

Reduction

 Given associative operator

 a0 a1 a2 … an-1

 Examples

Add

Multiply

And, Or

Maximum, Minimum

Parallel Reduction Evolution

Parallel Reduction Evolution

Parallel Reduction Evolution

Binomial Trees

Subgraph of hypercube

Finding Global Sum

4 2 0 7

-3 5 -6 -3

8 1 2 3

-4 4 6 -1

Finding Global Sum

1 7 -6 4

4 5 8 2

Finding Global Sum

8 -2

9 10

Finding Global Sum

17 8

Finding Global Sum

25

Binomial Tree

Agglomeration

Agglomeration

sum

sum sum

sum

The n-body Problem

The n-body Problem

Partitioning

 Domain partitioning

 Assume one task per particle

 Task has particle’s position, velocity vector

 Iteration

Get positions of all other particles

Compute new position, velocity

Gather

All-gather

Complete Graph for All-gather

Hypercube for All-gather

Communication Time

p

pn
p

p

np

i

)1(
log

2

 log

1

1-i

Hypercube

Complete graph

p

pn
p

pn
p

)1(
)1()

/
)(1(

Adding Data Input

Scatter

Scatter in log p Steps

12345678 56781234 56 12

7834

Summary: Task/channel Model

 Parallel computation

Set of tasks

 Interactions through channels

 Good designs

Maximize local computations

Minimize communications

Scale up

Summary: Design Steps

 Partition computation

 Agglomerate tasks

 Map tasks to processors

 Goals

Maximize processor utilization

Minimize inter-processor communication

Summary: Fundamental Algorithms

 Reduction

 Gather and scatter

 All-gather

