
Chapter 3

Parallel Algorithm Design

Outline

 Task/channel model

 Algorithm design methodology

 Case studies

Task/Channel Model

 Parallel computation = set of tasks

 Task

Program

Local memory

Collection of I/O ports

 Tasks interact by sending messages through

channels

Task/Channel Model

Task
Channel

Foster’s Design Methodology

 Partitioning

 Communication

 Agglomeration

 Mapping

Foster’s Methodology

Problem
Partitioning

Communication

AgglomerationMapping

Partitioning
 Dividing computation and data into pieces

 Domain decomposition

 Divide data into pieces

 e.g., An array into sub-arrays (reduction); A loop
into sub-loops (matrix multiplication), A search

space into sub-spaces (chess)

 Determine how to associate computations with
the data

 Functional decomposition

 Divide computation into pieces
 e.g., pipelines (floating point multiplication), workflows

(pay roll processing)

 Determine how to associate data with the
computations

Example Domain Decompositions

Example Functional Decomposition

Partitioning Checklist

 Large Grained Tasks

e.g, at least 10x more primitive tasks than
processors in target computer

 Balance Load

Primitive tasks roughly the same size

 Scalable

Number of tasks an increasing function of
problem size

Communication

 Determine values passed among tasks

 Local communication

 Task needs values from a small number of
other tasks

 Create channels illustrating data flow

 Global communication

 Significant number of tasks contribute data to
perform a computation

 Don’t create channels for them early in design

Communication Checklist

 Balanced

 Communication operations balanced among
tasks

 Small degree:

 Each task communicates with only small group
of neighbors

 Concurrency

 Tasks can perform communications
concurrently

 Task can perform computations concurrently

Agglomeration

 Grouping tasks into larger tasks

 Goals

 Improve performance

Maintain scalability of program

Simplify programming

 In MPI programming, goal often to create

one agglomerated task per processor

Agglomeration Can Improve

Performance

 Eliminate communication between

primitive tasks agglomerated into

consolidated task

 Combine groups of sending and receiving

tasks

Agglomeration Checklist

 Locality of parallel algorithm has increased

 Tradeoff between agglomeration and code

modifications costs is reasonables

 Agglomerated tasks have similar computational

and communications costs

 Number of tasks increases with problem size

 Number of tasks suitable for likely target systems

Mapping

 Process of assigning tasks to processors

 Centralized multiprocessor: mapping done
by operating system

 Distributed memory system: mapping done
by user

 Conflicting goals of mapping

Maximize processor utilization

Minimize interprocessor communication

Mapping Example

Optimal Mapping

 Finding optimal mapping is NP-hard

 Must rely on heuristics

Mapping Decision Tree

 Static number of tasks

 Structured communication

 Constant computation time per task

• Agglomerate tasks to minimize comm

• Create one task per processor

 Variable computation time per task

• Cyclically map tasks to processors

 Unstructured communication

• Use a static load balancing algorithm

 Dynamic number of tasks

Mapping Strategy

 Static number of tasks

 Dynamic number of tasks

Use a run-time task-scheduling algorithm

• e.g., a master slave strategy

 Use a dynamic load balancing algorithm

• e.g., share load among neighboring

processors; remapping periodically

Mapping Checklist

 Considered designs based on one task per
processor and multiple tasks per processor

 If multiple task per processor chosen,
ratio of tasks to processors is at least 10:1

 Evaluated static and dynamic task allocation

 If dynamic task allocation chosen, task
allocator is not a bottleneck to performance

Case Studies

 Boundary value problem

 Finding the maximum

 The n-body problem

 Adding data input

Boundary Value Problem

Ice water Rod Insulation

Rod Cools as Time Progresses

Finite Difference Approximation

Partitioning

 One data item per grid point

 Associate one primitive task with each grid

point

 Two-dimensional domain decomposition

Communication

 Identify communication pattern between

primitive tasks

 Each interior primitive task has three

incoming and three outgoing channels

Agglomeration and Mapping

Agglomeration

Sequential execution time

  – time to update element

 n – number of elements

 m – number of iterations

 Sequential execution time: mn

Parallel Execution Time

 p – number of processors

  – message latency

 Parallel execution time m(n/p+2)

Finding the Maximum Error

Computed 0.15 0.16 0.16 0.19

Correct 0.15 0.16 0.17 0.18

Error (%) 0.00% 0.00% 6.25% 5.26%

6.25%

Reduction

 Given associative operator 

 a0  a1  a2  …  an-1

 Examples

Add

Multiply

And, Or

Maximum, Minimum

Parallel Reduction Evolution

Parallel Reduction Evolution

Parallel Reduction Evolution

Binomial Trees

Subgraph of hypercube

Finding Global Sum

4 2 0 7

-3 5 -6 -3

8 1 2 3

-4 4 6 -1

Finding Global Sum

1 7 -6 4

4 5 8 2

Finding Global Sum

8 -2

9 10

Finding Global Sum

17 8

Finding Global Sum

25

Binomial Tree

Agglomeration

Agglomeration

sum

sum sum

sum

The n-body Problem

The n-body Problem

Partitioning

 Domain partitioning

 Assume one task per particle

 Task has particle’s position, velocity vector

 Iteration

Get positions of all other particles

Compute new position, velocity

Gather

All-gather

Complete Graph for All-gather

Hypercube for All-gather

Communication Time

p

pn
p

p

np

i 





)1(
log

2

 log

1

1-i 













Hypercube

Complete graph

p

pn
p

pn
p







)1(
)1()

/
)(1(




Adding Data Input

Scatter

Scatter in log p Steps

12345678 56781234 56 12

7834

Summary: Task/channel Model

 Parallel computation

Set of tasks

 Interactions through channels

 Good designs

Maximize local computations

Minimize communications

Scale up

Summary: Design Steps

 Partition computation

 Agglomerate tasks

 Map tasks to processors

 Goals

Maximize processor utilization

Minimize inter-processor communication

Summary: Fundamental Algorithms

 Reduction

 Gather and scatter

 All-gather

