
MPI Interface

Parallel programming

03 - Monte Carlo Method for

calculating 𝝅
Monte Carlo methods can be thought of as statistical simulation methods that

utilize a sequences of random numbers to perform the simulation. The name

"Monte Carlo'' was coined by Nicholas Constantine Metropolis (1915-1999) and

inspired by Stanslaw Ulam (1909-1986), because of the similarity of statistical

simulation to games of chance, and because Monte Carlo is a center for gambling

and games of chance. In a typical process one compute the number of points in a

set A that lies inside box R. The ratio of the number of points that fall inside A to

the total number of points tried is equal to the ratio of the two areas (or volume in

3 dimensions). The accuracy of the ratio 𝜌 depends on the number of points used,

with more points leading to a more accurate value.

Monte Carlo Method for calculating 𝝅
A simple Monte Carlo simulation to approximate the value of 𝝅 could involve

randomly selecting points 𝑥𝑖 , 𝑦𝑖 in the unit square and determining the ratio

𝜌 =
𝑚

𝑛
, where 𝑚 is number of points that satisfy 𝑥𝑖

2 + 𝑦𝑖
2 ≤ 1. In a typical

simulation of sample size 𝑛 = 1000 there were 787 points satisfying , shown in

Figure below. Using this data, we obtain 𝜌 =
𝑚

𝑛
=

787

1000
 and 𝜋 = 𝜌 ∗ 4 =

3.148.

04 - Circuit Satisfability
Implement the MPI program that computes whether the cicruit shown above is satisfable (in other

words, for what combinations of input values (if any) will the cicruit output the value 1?), and return

the value how many combinations satisfy this circuit. This problem is in class NP-complete, which

means there is no known polynomial time algorithm to solve general instances of this problem.

Collective Communications

 Collective communication involves the sending and receiving

of data among processes

 These "blackbox" routines hide a lot of the messy details and

often implement the most efficient algorithm known for that

operation

 You must ensure that all processors execute a given collective

communication call

Examples of collective communication

 Barrier sychronization across all processes

 Broadcast from one process to all other processes

 Global reduction operations such as sum, min, max or user-

defined reductions

 Gather data from all processes to one process

 Scatter data from one process to all processes

 …

Barrier Synchronization

 There are occasions when some processors cannot proceed

until other processors have completed their current

instructions

 The MPI_BARRIER routine blocks the calling process until all

group processes have called the function

 You should only insert barriers when they are truly needed

int MPI_Barrier (comm)

Broadcast

 The MPI_BCAST routine enables you to copy data from the

memory of the root processor to the same memory locations

for other processors in the communicator

Broadcast
 int MPI_Bcast (void* buffer, int count, MPI_Datatype

datatype, int rank, MPI_Comm comm)

 buffer in/out starting address of send buffer

 count in number of elements in send buffer

 datatype in data type of elements in send buffer

 rank in rank of root process

 comm in mpi communicator

Example 03 - Broadcast

Reduction

 The MPI_REDUCE routine enables you to:

 Collect data from each processor

 Reduce these data to a single value (such as a sum or max)

 Store the reduced result on the root processor

Reduction
 MPI_Reduce(send_buffer, recv_buffer, count, data_type,

reduction_operation, rank_of_receiving_process,

communicator)

 The send buffer is defined by the arguments send_buffer, count,

and datatype

 The receive buffer is defined by the arguments recv_buffer, count,

and datatype

 Operations: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD,

MPI_LAND, MPI_BAND, MPI_LOR, MPI_LXOR,

Example 04 - Reduction

