Parallel Programming in C with MPI and OpenMP

Michael J. Quinn

Chapter 5

The Sieve of Eratosthenes

Chapter Objectives

- Analysis of block allocation schemes
- Function MPI_Bcast
- Performance enhancements

Outline

- Sequential algorithm
- Sources of parallelism
- Data decomposition options
- Parallel algorithm development, analysis
- MPI program
- Benchmarking
- Optimizations

Sequential Algorithm

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
47	48	49	50	51	52	53	54	55	56	57	58	59	60	61

Complexity: $\Theta(n \ln \ln n)$

Pseudocode

- 1. Create list of unmarked natural numbers 2, 3, ..., n
- $2. k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k$

until $k^2 > n$

4. The unmarked numbers are primes

Sources of Parallelism

- Domain decomposition
 - ◆ Divide data into pieces
 - ◆ Associate computational steps with data
- One primitive task per array element

Making 3(a) Parallel

Mark all multiples of k between k^2 and n

```
\Rightarrow
```

```
for all j where k^2 \le j \le n do
if j \mod k = 0 then
mark j (it is not a prime)
endif
endfor
```

Making 3(b) Parallel

Find smallest unmarked number > k

Min-reduction (to find smallest unmarked number > k)

Broadcast (to get result to all tasks)

Agglomeration Goals

- Consolidate tasks
- Reduce communication cost
- Balance computations among processes

Data Decomposition Options

- Interleaved (cyclic)
 - ◆ Easy to determine "owner" of each index
 - ◆ Leads to load imbalance for this problem
- Block
 - ◆ Balances loads
 - ◆ More complicated to determine owner if
 n not a multiple of p

Block Decomposition Options

- Want to balance workload when n not a multiple of p
- Each process gets either n/p or n/p elements
- Seek simple expressions
 - ◆ Find low, high indices given an owner
 - ◆ Find owner given an index

Method #1

- $\blacksquare \text{ Let } r = n \bmod p$
- If r = 0, all blocks have same size
- Else
 - First r blocks have size $\lceil n/p \rceil$
 - Remaining p-r blocks have size $\lfloor n/p \rfloor$

Examples

17 elements divided among 7 processes

17 elements divided among 3 processes

Method #1 Calculations

First element controlled by process *i*

$$i \lfloor n/p \rfloor + \min(i,r)$$

■ Last element controlled by process *i*

$$(i+1)\lfloor n/p\rfloor + \min(i+1,r)-1$$

■ Process controlling element *j*

$$\min(\lfloor j/(\lfloor n/p\rfloor+1)\rfloor,\lfloor (j-r)/\lfloor n/p\rfloor)$$

Method #2

- Scatters larger blocks among processes
- First element controlled by process i $\lfloor in/p \rfloor$
- Last element controlled by process i $\lfloor (i+1)n/p \rfloor -1$
- Process controlling element j $\lfloor p(j+1)-1)/n \rfloor$

Examples

17 elements divided among 7 processes

17 elements divided among 3 processes

Comparing Methods

Our choice

Operations	Method 1	Method 2
Low index	4	2
High index	6	4
Owner	7	4

Assuming no operations for "floor" function

Pop Quiz

Illustrate how block decomposition method #2 would divide 13 elements among 5 processes.

$$13(0)/5 = 0$$
 $13(2)/5 = 5$ $13(4)/5 = 10$
 $13(1)/5 = 2$ $13(3)/5 = 7$

Block Decomposition Macros

```
#define BLOCK LOW(id,p,n) ((i)*(n)/(p))
#define BLOCK HIGH(id,p,n) \
        (BLOCK LOW((id)+1,p,n)-1)
#define BLOCK SIZE(id,p,n) \
        (BLOCK LOW((id)+1)-BLOCK LOW(id))
#define BLOCK OWNER(index,p,n) \
        (((p)*(index)+1)-1)/(n))
```

Local vs. Global Indices

Looping over Elements

Sequential program for (i = 0; i < n; i++) { Index i on this process... Parallel program size = SLOCK SIZE (id,p,n); for ((i)= 0; i < size; i++) { gi) = i + BLOCK LOW(id,p,n);...takes place of sequential program's index gi

Decomposition Affects Implementation

- Largest prime used to sieve is \sqrt{n}
- First process has $\lfloor n/p \rfloor$ elements
- It has all sieving primes if $p < \sqrt{n}$
- First process always broadcasts next sieving prime
- No reduction step needed

Fast Marking

Block decomposition allows same marking as sequential algorithm:

$$j, j+k, j+2k, j+3k, \dots$$

instead of

for all j in block if $j \mod k = 0$ then mark j (it is not a prime)

Parallel Algorithm Development

- 1. Create list of unmarked natural numbers 2, 3, ..., n
- Each process creates its share of list Each process does this
- 3. Repeat

Each process marks its share of list

- (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow \text{smallest unmarked number} > k \rightarrow \text{Process 0 only}$
 - (c) Process 0 broadcasts *k* to rest of processes

until $k^2 > m$

- 4. The unmarked numbers are primes
- 5. Reduction to determine number of primes

Function MPI_Bcast

```
MPI_Bcast (&k, 1, MPI_INT, 0, MPI_COMM_WORLD);
```

Task/Channel Graph

Analysis

- \blacksquare χ is time needed to mark a cell
- Sequential execution time: χ *n* ln ln *n*
- Number of broadcasts: $\sqrt{n} / \ln \sqrt{n}$
- Broadcast time: $\lambda \lceil \log p \rceil$
- Expected execution time:

$$\chi n \ln \ln n / p + (\sqrt{n} / \ln \sqrt{n}) \lambda \lceil \log p \rceil$$

Code (1/4)

```
#include <mpi.h>
#include <math.h>
#include <stdio.h>
#include "MyMPI.h"
#define MIN(a,b) ((a)<(b)?(a):(b))
int main (int argc, char *argv[])
{
   MPI Init (&argc, &argv);
   MPI Barrier(MPI COMM WORLD);
   elapsed time = -MPI Wtime();
   MPI Comm rank (MPI COMM WORLD, &id);
   MPI Comm size (MPI COMM WORLD, &p);
if (argc != 2) {
      if (!id) printf ("Command line: %s <m>\n", argv[0]);
      MPI Finalize(); exit (1);
}
```

Code (2/4)

```
n = atoi(argv[1]);
low value = 2 + BLOCK LOW(id,p,n-1);
high value = 2 + BLOCK HIGH(id,p,n-1);
size = BLOCK SIZE(id,p,n-1);
proc0 size = (n-1)/p;
if ((2 + proc0 size) < (int) sqrt((double) n)) {</pre>
   if (!id) printf ("Too many processes\n");
   MPI Finalize();
  exit (1);
marked = (char *) malloc (size);
if (marked == NULL) {
   printf ("Cannot allocate enough memory\n");
   MPI Finalize();
   exit (1);
```

Code (3/4)

```
for (i = 0; i < size; i++) marked[i] = 0;
if (!id) index = 0;
prime = 2;
do {
   if (prime * prime > low value)
      first = prime * prime - low value;
   else {
      if (!(low value % prime)) first = 0;
      else first = prime - (low value % prime);
   for (i = first; i < size; i += prime) marked[i] = 1;</pre>
   if (!id) {
      while (marked[++index]);
     prime = index + 2;
   MPI Bcast (&prime, 1, MPI INT, 0, MPI COMM WORLD);
} while (prime * prime <= n);</pre>
```

Code (4/4)

```
count = 0;
for (i = 0; i < size; i++)
   if (!marked[i]) count++;
MPI Reduce (&count, &global count, 1, MPI INT, MPI SUM,
   0, MPI COMM WORLD);
elapsed time += MPI Wtime();
if (!id) {
   printf ("%d primes are less than or equal to %d\n",
      global count, n);
  printf ("Total elapsed time: %10.6f\n", elapsed time);
MPI Finalize ();
return 0;
```

Benchmarking

- Execute sequential algorithm
- Determine $\chi = 85.47$ nanosec
- Execute series of broadcasts
- Determine $\lambda = 250 \, \mu sec$

Execution Times (sec)

Processors	Predicted	Actual (sec)
1	24.900	24.900
2	12.721	13.011
3	8.843	9.039
4	6.768	7.055
5	5.794	5.993
6	4.964	5.159
7	4.371	4.687
8	3.927	4.222

Improvements

- Delete even integers
 - Cuts number of computations in half
 - \bullet Frees storage for larger values of n
- Each process finds own sieving primes
 - Replicating computation of primes to \sqrt{n}
 - ◆ Eliminates broadcast step
- Reorganize loops
 - ◆ Increases cache hit rate

Reorganize Loops

Lower

Cache hit rate

Higher

Comparing 4 Versions

Procs	Sieve 1		mprovement	Sieve 4
1	24.900	12.237	12.466	→ 2.543
2	12.721	6.609	6.378	1.3 <mark>30</mark>
3	8.843	5.019	4.272	0.901
4	6.768	4.072	2 201	0 <mark>6</mark> 79
5	5.794	3.652	'-fold improv '-2.つつり	vement U.543
6	4.964	3.270	2.127	0.4 <mark>56</mark>
7	4.371	3.059	1.820	0.391
8	3.927	2.856	1.585	0.342

Summary

- Sieve of Eratosthenes: parallel design uses domain decomposition
- Compared two block distributions
 - ◆ Chose one with simpler formulas
- Introduced MPI_Bcast
- Optimizations reveal importance of maximizing single-processor performance