Parallel Programming

Michael J. Quinn

Chapter Objectives

= Analysis of block allocation schemes
= Function MPI_Bcast

m Performance enhancements

Outline

m Sequential algorithm

m Sources of parallelism

m Data decomposition options

m Parallel algorithm development, analysis
= MPI program

= Benchmarking

= Optimizations

Sequential Algorithm

s
60

Complexity: ®(n In In n)

Pseudocode

1. Create list of unmarked natural numbers 2, 3, ..., n

2.k« 2

3. Repeat
(a) Mark all multiples of k between k2 and n

(b) k «— smallest unmarked number > k
until k? > n
4. The unmarked numbers are primes

Sources of Parallelism

= Domain decomposition

+ Divide data Into pieces

¢ Assoclate computational steps with data
= One primitive task per array element

Making 3(a) Parallel

Mark all multiples of k between k? and n
—

forall jwhere k? <j<ndo
If] mod k =0 then
mark j (it Is not a prime)
endif
endfor

Making 3(b) Parallel

Find smallest unmarked number > k

—

Min-reduction (to find smallest unmarked number > k)

Broadcast (to get result to all tasks)

Agglomeration Goals

m Consolidate tasks
m Reduce communication cost
= Balance computations among processes

Data Decomposition Options

m Interleaved (cyclic)
¢ Easy to determine “owner” of each index
¢ Leads to load imbalance for this problem
= Block
+ Balances loads

+ More complicated to determine owner if
n not a multiple of p

Block Decomposition Options

m \Want to balance workload when n not a
multiple of p

= Each process gets either [n/p | or L n/p.]
elements

m Seek simple expressions
¢ Find low, high indices given an owner
+ Find owner given an index

Method #1

mletr=nmodp
m Ifr =0, all blocks have same size
m Else
o First r blocks have size [n/p |
» Remaining p-r blocks have size | n/p]

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Method #1 Calculations

= First element controlled by process |
i|n/ p |+ min(i,r)

m L ast element controlled by process I
i+ n/p|+min(i+1r)-1

m Process controlling element |

min(|j/((n/ pJ+2) }L(i—r)/n/ pl)

Method #2

m Scatters larger blocks among processes
= First element controlled by process |
lin/p|

m L ast element controlled by process I
[(i+Dn/p|-1

m Process controlling element |

| p(j+1)-1)/n]

Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Comparing Methods

Our choice
Operations | Method 1
Low Index 4 2 ‘
High index 6 4
Owner I 4

Assuming no operations for “floor” function

Pop Quiz

m |llustrate how block decomposition method
#2 would divide 13 elements among 5
ProCesses.

13(0)/5=0 13(2)/5=5 13(4)/5 =10

R R N N
13(1)/5=2 13(3)/5=7

Block Decomposition Macros

#define

#define

#define

#define

BLOCK LOW(id,p,n) ((i)*(n)/(p))

BLOCK HIGH(id,p,n) \
(BLOCK_LOW ((id)+1,p,n)-1)

BLOCK SIZE (id,p,n) \
(BLOCK LOW ((id)+1) -BLOCK LOW (id))

BLOCK OWNER (index,p,n) \
(((p) *(index)+1)-1)/(n))

|_ocal vs. Global Indices

LO 1 2 la

G 789

v
E

Looping over Elements

m Sequential program
for (i = 0; i < n; i++) {

} IndeX I on this process...

= Parallel progym
size =yBLOCK SIZE (id,p,n);
for ((1)= 0; i < size; i++) {

= i + BLOCK LOW(id,p,n) ;
}

...takes place of sequential program’s index gi

Decomposition Affects Implementation

m Largest prime used to sieve is Vn
= First process has | n/p. elements
= It has all sieving primes if p < Vn

m FIrst process always broadcasts next sieving
prime

= No reduction step needed

Fast Marking

m Block decomposition allows same marking as
sequential algorithm:

i, j+k j+2k j+3Kk, ...
Instead of

for all j in block
If | mod k = 0 then mark | (it Is not a prime)

Parallel Algorithm Development

(Create list of unmarked natural numbers 2, 3, ,D

Each process creates its share of list

Each process does this
3. Repeat Each process marks its share of list

@Mark all multiples of k between k? an@

@)k <« smallest unmarked number >k > Process 0 only
(c) Process O broadcasts k to rest of processes

until k2 > m

4. The unmarked numbers are primes
5. Reduction to determine number of primes

Function MPI Bcast

int MPI Bcast (
void *buffer, /* Addr of 1lst element */
int count, /* # elements to broadcast */
MPI Datatype datatype, /* Type of elements */
int root, /* ID of root process */

MPI Comm comm) /* Communicator */

MPI Bcast (&k, 1, MPI INT, 0, MPI COMM WORLD) ;

Task/Channel Graph

Analysis

m y IS time needed to mark a cell

m Seqguential execution time: ¥ n In In n
= Number of broadcasts: ¥n / In vn

= Broadcast time: A | log p |

m Expected execution time:

mininn/ p+&/n/inyn)Aflog p |

Code (1/4)

#include <mpi.h>

#include <math.h>

#include <stdio.h>

#include "MyMPI.h"

#define MIN(a,b) ((a)<(b)?(a): (b))

int main (int argc, char *argv[])

{

MPI Init (&argc, &argv);

MPI Barrier (MPI_COMM WORLD) ;

elapsed time = -MPI Wtime () ;

MPI Comm rank (MPI_COMM WORLD, é&id);

MPI Comm size (MPI_COMM WORLD, &p);

if (argec !'= 2) {

if ('id) printf ("Command line: %s <m>\n", argv[0]);
MPI Finalize(); exit (1);

Code (2/4)

n = atoi(argv[l])

low value = 2 + BLOCK LOW(id,p,n-1);

high value = 2 + BLOCK HIGH(id,p,n-1);

size = BLOCK SIZE (id,p,n-1);

procO0 size = (n-1)/p;

if ((2 + procO_size) < (int) sqrt((double) n)) {
if ('id) printf ("Too many processes\n");
MPI Finalize();
exit (1),

}

marked = (char *) malloc (size);

if (marked == NULL) {
printf ("Cannot allocate enough memory\n") ;
MPI Finalize();
exit (1),

Code (3/4)

for (1 = 0; 1 < size; i++) marked[i] = O;
if ('id) index = 0;
prime = 2;
do {
if (prime * prime > low_value)
first = prime * prime - low value;
else {
if (!(low _value % prime)) first

= 0;
else first = prime - (low _value % prime);

}

for (1 = first; i < size; i += prime) marked[i]

if ('id) {
while (marked[++index]) ;
prime = index + 2;

}

1;

MPI Bcast (&prime, 1, MPI_INT, O, MPI COMM WORLD) ;

} while (prime * prime <= n);

Code (4/4)

count = 0;
for (1 = 0; i < size; i++)
if ('marked[i]) count++;
MPI Reduce (&count, &global count, 1, MPI INT, MPI SUM,
0, MPI_COMM WORLD) ;
elapsed time += MPI Wtime () ;
if ('id) {
printf ("%d primes are less than or equal to %d\n",
global count, n);
printf ("Total elapsed time: %10.6f\n", elapsed time) ;
}
MPI Finalize ();
return O;

Benchmarking

m Execute sequential algorithm
m Determine y = 85.47 nanosec
m EXxecute series of broadcasts
m Determine A = 250 usec

Execution Times (sec)

Processors | Predicted | Actual (sec)
1 24.900 24.900
2 12.721 13.011
3 8.843 9.039
4 6.768 7.055
5 5.794 5.993
6 4,964 5.159
7 4,371 4,687
8 3.927 4,222

Improvements

m Delete even integers
¢ Cuts number of computations in half
¢ Frees storage for larger values of n
m Each process finds own sieving primes
« Replicating computation of primes to Vn
¢ Eliminates broadcast step
= Reorganize loops
+ Increases cache hit rate

Reorganize Loops

3-99: multiples of 3

3-99: multiples of 5

00000000 Lower

3-99: multiples of 7

Cache hit rate

3-17: multiples of 3

19-33: multiples of 3, 5

35-49: multiples of 3, 5, 7

51-65: multiples of 3, 5, 7 H igher
67-81: multiples of 3, 5, 7

83-97: multiples of 3, 5, 7

99: multiples of 3, 5, 7

Comparing 4 Versions

- - e~ N | Doa..a N | -

Procs |Sievel | < 5t T Sleve 4
1 24.900 Y2237 124667 2.943
2 | 12721| 6609 6378 1.330
3 | 8843| 5019] 4.272| 0401
4 | 6768 4072 2ol ngrg

7-fold improvement
5 5.794 3.65z £.92Y u.943
6 4.964 3.270 2.127 0.456
! 4.371 3.059 1.820 0.391
8 3.927 2.856 1.585 0.342

Summary

m Sieve of Eratosthenes:

parallel design uses

domain decomposition
m Compared two block distributions

» Chose one with sim

nler formulas

= Introduced MPI Bcast

= Optimizations reveal importance of
maximizing single-processor performance

