Parallel Programming
with MPI and OpenMP

Michael J. Quinn

Chapter 6

|Q/(|" ’\|J(rit!

Chapter Objectives

® Creating 2-D arrays

® Thinking about “grain size”

® Introducing point-to-point communications
® Reading and printing 2-D matrices

® Analyzing performance when computations
and communications overlap

Outline

® All-pairs shortest path problem
® Dynamic 2-D arrays

® Parallel algorithm design

® Point-to-point communication
® Block row matrix I/O

® Analysis and benchmarking

All-pairs Shortest Path Problem

A B C D E

m O O = »

Resulting Adjacency Matrix Containing Distances

Floyd’s Algorithm

for k — 0to n-1
fori — 0ton-1
forj « 0ton-1
ali,j| — min (afij], a[i,k] + a[kj])
endfor
endfor
endfor

Why It Works

Shortest path from i to k&
through O, 1, ..., k-1

Compyted
In previous
Shortest path from i to j iterations

through 0, 1, ..., k-1

Shortest path from £ to j
>through 0,1, ... k1

Dynamic 1-D Array Creation

Run-time Stack A

Dynamic 2-D Array Creation

Run-time Stack
Bstorage B

Designing Parallel Algorithm

® Partitioning
® Communication

B Agglomeration and Mapping

Partitioning

® Domain or functional decomposition?
® Look at pseudocode

® Same assignment statement executed #’
times

® No functional parallelism

® Domain decomposition: divide matrix A
into its #’ elements

Communication

1ts value w/in
task row

1ts value w/in
task column

O
— O Updating
Primitive tasks ® a/3.4] when
@) k=1
O
Iteration £: O Iteration £:
every task o every task
In row k in column k&
broadcasts O broadcasts
O
O

Agglomeration and Mapping

® Number of tasks: static

® Communication among tasks: structured
® Computation time per task: constant

® Strategy:

¢ Agglomerate tasks to minimize
communication

¢ Create one task per MPI process

Two Data Decompositions

Rowwise block striped Columnwise block striped

Comparing Decompositions

® Columnwise block striped

¢ Broadcast within columns eliminated
® Rowwise block striped

¢ Broadcast within rows eliminated

¢ Reading matrix from file simpler

® Choose rowwise block striped
decomposition

File Input

File

EEERES [

Pop Quiz

Why don’t we input the entire file at once
and then scatter i1ts contents among the
processes, allowing concurrent message
passing?

Point-to-point Communication

® Involves a pair of processes
® One process sends a message

® Other process receives the message

Send/Receive Not Collective

Process h Process i Process |

-

Compute Wait

Receive from 1

Compute

Function MPI Send

int MPI_Send (
void
int
MPI Datatype
int
int

MPI_Comm

*message,

count,
datatype,
dest,
tag,

comin

Function MPI Recv

int MPI Recv (
void *message,
int count,

MPI Datatype datatype,

int source,
int tag,
MPI Comm comm,

MPI Status *status

Coding Send/Recelve

if (ID == j) {

Receive from I

Receive i1s before Send.
} Why does this work?

if (ID == i) {

Send to j

Inside MPI Send and MPI Recv

Sending Process Receiving Process

i

i T

i

MPI Send MPI_Recv

Return from MPI Send

® Function blocks until message buffer free
® Message buffer 1s free when

¢ Message copied to system buffer, or

® Message transmitted
® Typical scenario

® Message copied to system buffer

¢ Transmission overlaps computation

Return from MPI Recv

® Function blocks until message in buffer

® If message never arrives, function never
returns

Deadlock

® Deadlock: process waiting for a condition
that will never become true

® Easy to write send/receive code that
deadlocks

¢ Two processes: both receive before send
¢ Send tag doesn’t match receive tag

® Process sends message to wrong
destination process

Computational Complexity

® Innermost loop has complexity O(#n)

® Middle loop executed at most Li/plitimes
® QOuter loop executed 7 times

® Overall complexity O(#’/p)

Communication Complexity

® No communication in inner loop
® No communication in middle loop

® Broadcast in outer loop — complexity i1s

O(n log p)
® Overall complexity ©(#’ log p)

Execution Time Expression (1)

Message-passing time
Messages per broadcast

[terations of outer loop

Cell update time

[terations of inner loop

Iterations of middle loop
[terations of outer loop

Computation/communication Overlap

[] Compute
Key: [] Setup message

B Wait

Execution Time Expression (2)

[terations of outer loop

Cell update time

[terations of inner loop

Iterations of middle loop
[terations of outer loop

t

A A A 4 A
| 1 Message transmission
Message-passing time
Messages per broadcast

Predicted vs. Actual Performance

Execution Time (sec)

Processes Predicted Actual
1 25.54 25.54
2 13.02 13.89
3 9.01 9.60
4 6.89 7.29
5 5.86 5.99
6 5.01 5.16
7 4.40 4.50
8 3.94 3.98

Summary

® Two matrix decompositions
¢ Rowwise block striped
¢ Columnwise block striped
® Blocking send/receive functions
¢ MPI Send
¢* MPI Recv

B Overlapping communications with computations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

