

Parallel Programming
with MPI and OpenMP

Michael J. QuinnMichael J. Quinn

Chapter 6

Floyd’s AlgorithmFloyd’s Algorithm

Chapter Objectives

 Creating 2-D arraysCreating 2-D arrays
 Thinking about “grain size”Thinking about “grain size”
 Introducing point-to-point communicationsIntroducing point-to-point communications
 Reading and printing 2-D matricesReading and printing 2-D matrices
 Analyzing performance when computations Analyzing performance when computations

and communications overlapand communications overlap

Outline

 All-pairs shortest path problemAll-pairs shortest path problem
 Dynamic 2-D arraysDynamic 2-D arrays
 Parallel algorithm designParallel algorithm design
 Point-to-point communicationPoint-to-point communication
 Block row matrix I/OBlock row matrix I/O
 Analysis and benchmarkingAnalysis and benchmarking

All-pairs Shortest Path Problem

A

E

B

C

D

4

6

1 35

3

1

2

0 6 3 6

4 0 7 10

12 6 0 3

7 3 10 0

9 5 12 2

A

B

C

D

E

A B C D

4

8

1

11

0

E

Resulting Adjacency Matrix Containing Distances

Floyd’s Algorithm

for k ← 0 to n-1
for i ← 0 to n-1

for j ← 0 to n-1
a[i,j] ← min (a[i,j], a[i,k] + a[k,j])

endfor
endfor

endfor

Why It Works

i

k

j

Shortest path from i to k
 through 0, 1, …, k-1

Shortest path from k to j
 through 0, 1, …, k-1

Shortest path from i to j
 through 0, 1, …, k-1

Computed
in previous
iterations

Dynamic 1-D Array Creation

A

Heap

Run-time Stack

Dynamic 2-D Array Creation

Heap

Run-time Stack
Bstorage B

Designing Parallel Algorithm

 PartitioningPartitioning
 CommunicationCommunication
 Agglomeration and MappingAgglomeration and Mapping

Partitioning

 Domain or functional decomposition?Domain or functional decomposition?
 Look at pseudocodeLook at pseudocode
 Same assignment statement executed Same assignment statement executed nn33

timestimes
 No functional parallelismNo functional parallelism
 Domain decomposition: divide matrix Domain decomposition: divide matrix AA

into its into its nn22 elements elements

Communication

Primitive tasks
Updating
a[3,4] when
k = 1

Iteration k:
every task
in row k
broadcasts
its value w/in
task column

Iteration k:
every task
in column k
broadcasts
its value w/in
task row

Agglomeration and Mapping

 Number of tasks: staticNumber of tasks: static
 Communication among tasks: structuredCommunication among tasks: structured
 Computation time per task: constantComputation time per task: constant
 Strategy:Strategy:

 Agglomerate tasks to minimize Agglomerate tasks to minimize
communicationcommunication

 Create one task per MPI processCreate one task per MPI process

Two Data Decompositions

Rowwise block striped Columnwise block striped

Comparing Decompositions

 Columnwise block stripedColumnwise block striped
 Broadcast within columns eliminatedBroadcast within columns eliminated

 Rowwise block stripedRowwise block striped
 Broadcast within rows eliminatedBroadcast within rows eliminated
 Reading matrix from file simplerReading matrix from file simpler

 Choose rowwise block striped Choose rowwise block striped
decompositiondecomposition

File Input

File

Pop Quiz

Why don’t we input the entire file at once
and then scatter its contents among the
processes, allowing concurrent message
passing?

Point-to-point Communication

 Involves a pair of processesInvolves a pair of processes
 One process sends a messageOne process sends a message
 Other process receives the messageOther process receives the message

Send/Receive Not Collective

Function MPI_Send

int MPI_Send (

 void *message,

 int count,

 MPI_Datatype datatype,

 int dest,

 int tag,

 MPI_Comm comm

)

Function MPI_Recv
int MPI_Recv (

 void *message,

 int count,

 MPI_Datatype datatype,

 int source,

 int tag,

 MPI_Comm comm,

 MPI_Status *status

)

Coding Send/Receive

…
if (ID == j) {
 …
 Receive from I
 …
}
…
if (ID == i) {
 …
 Send to j
 …
}
…

Receive is before Send.
Why does this work?

Inside MPI_Send and MPI_Recv

Sending Process Receiving Process

Program
Memory

System
Buffer

System
Buffer

Program
Memory

MPI_Send MPI_Recv

Return from MPI_Send

 Function blocks until message buffer freeFunction blocks until message buffer free
 Message buffer is free whenMessage buffer is free when

 Message copied to system buffer, orMessage copied to system buffer, or
 Message transmittedMessage transmitted

 Typical scenarioTypical scenario
 Message copied to system bufferMessage copied to system buffer
 Transmission overlaps computationTransmission overlaps computation

Return from MPI_Recv

 Function blocks until message in bufferFunction blocks until message in buffer
 If message never arrives, function never If message never arrives, function never

returnsreturns

Deadlock

 Deadlock: process waiting for a condition Deadlock: process waiting for a condition
that will never become truethat will never become true

 Easy to write send/receive code that Easy to write send/receive code that
deadlocksdeadlocks
 Two processes: both receive before sendTwo processes: both receive before send
 Send tag doesn’t match receive tagSend tag doesn’t match receive tag
 Process sends message to wrong Process sends message to wrong

destination processdestination process

Computational Complexity

 Innermost loop has complexity Innermost loop has complexity ΘΘ((nn))
 Middle loop executed at most Middle loop executed at most n/pn/p times times
 Outer loop executed Outer loop executed nn times times
 Overall complexity Overall complexity ΘΘ((nn33/p/p))

Communication Complexity

 No communication in inner loopNo communication in inner loop
 No communication in middle loopNo communication in middle loop
 Broadcast in outer loop Broadcast in outer loop — complexity is — complexity is

ΘΘ((nn log log pp))
 Overall complexity Overall complexity ΘΘ((nn22 log log pp))

Execution Time Expression (1)

   )/4(log/ βλχ npnnpnn ++

Iterations of outer loop
Iterations of middle loop

Cell update time

Iterations of outer loop

Messages per broadcast
Message-passing time

Iterations of inner loop

Computation/communication Overlap

Execution Time Expression (2)

Iterations of outer loop
Iterations of middle loop

Cell update time

Iterations of outer loop

Messages per broadcast
Message-passing time

Iterations of inner loop

      βλχ /4loglog/ nppnnpnn ++
Message transmission

Predicted vs. Actual Performance
Execution Time (sec)Execution Time (sec)

ProcessesProcesses PredictedPredicted ActualActual

11 25.5425.54 25.5425.54

22 13.0213.02 13.8913.89

33 9.019.01 9.609.60

44 6.896.89 7.297.29

55 5.865.86 5.995.99

66 5.015.01 5.165.16

77 4.404.40 4.504.50

88 3.943.94 3.983.98

Summary

 Two matrix decompositionsTwo matrix decompositions
 Rowwise block stripedRowwise block striped
 Columnwise block stripedColumnwise block striped

 Blocking send/receive functionsBlocking send/receive functions
 MPI_SendMPI_Send
 MPI_RecvMPI_Recv

 Overlapping communications with computationsOverlapping communications with computations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

