

Parallel Programming
with MPI and OpenMP

Michael J. QuinnMichael J. Quinn

Chapter 6

Floyd’s AlgorithmFloyd’s Algorithm

Chapter Objectives

 Creating 2-D arraysCreating 2-D arrays
 Thinking about “grain size”Thinking about “grain size”
 Introducing point-to-point communicationsIntroducing point-to-point communications
 Reading and printing 2-D matricesReading and printing 2-D matrices
 Analyzing performance when computations Analyzing performance when computations

and communications overlapand communications overlap

Outline

 All-pairs shortest path problemAll-pairs shortest path problem
 Dynamic 2-D arraysDynamic 2-D arrays
 Parallel algorithm designParallel algorithm design
 Point-to-point communicationPoint-to-point communication
 Block row matrix I/OBlock row matrix I/O
 Analysis and benchmarkingAnalysis and benchmarking

All-pairs Shortest Path Problem

A

E

B

C

D

4

6

1 35

3

1

2

0 6 3 6

4 0 7 10

12 6 0 3

7 3 10 0

9 5 12 2

A

B

C

D

E

A B C D

4

8

1

11

0

E

Resulting Adjacency Matrix Containing Distances

Floyd’s Algorithm

for k ← 0 to n-1
for i ← 0 to n-1

for j ← 0 to n-1
a[i,j] ← min (a[i,j], a[i,k] + a[k,j])

endfor
endfor

endfor

Why It Works

i

k

j

Shortest path from i to k
 through 0, 1, …, k-1

Shortest path from k to j
 through 0, 1, …, k-1

Shortest path from i to j
 through 0, 1, …, k-1

Computed
in previous
iterations

Dynamic 1-D Array Creation

A

Heap

Run-time Stack

Dynamic 2-D Array Creation

Heap

Run-time Stack
Bstorage B

Designing Parallel Algorithm

 PartitioningPartitioning
 CommunicationCommunication
 Agglomeration and MappingAgglomeration and Mapping

Partitioning

 Domain or functional decomposition?Domain or functional decomposition?
 Look at pseudocodeLook at pseudocode
 Same assignment statement executed Same assignment statement executed nn33

timestimes
 No functional parallelismNo functional parallelism
 Domain decomposition: divide matrix Domain decomposition: divide matrix AA

into its into its nn22 elements elements

Communication

Primitive tasks
Updating
a[3,4] when
k = 1

Iteration k:
every task
in row k
broadcasts
its value w/in
task column

Iteration k:
every task
in column k
broadcasts
its value w/in
task row

Agglomeration and Mapping

 Number of tasks: staticNumber of tasks: static
 Communication among tasks: structuredCommunication among tasks: structured
 Computation time per task: constantComputation time per task: constant
 Strategy:Strategy:

 Agglomerate tasks to minimize Agglomerate tasks to minimize
communicationcommunication

 Create one task per MPI processCreate one task per MPI process

Two Data Decompositions

Rowwise block striped Columnwise block striped

Comparing Decompositions

 Columnwise block stripedColumnwise block striped
 Broadcast within columns eliminatedBroadcast within columns eliminated

 Rowwise block stripedRowwise block striped
 Broadcast within rows eliminatedBroadcast within rows eliminated
 Reading matrix from file simplerReading matrix from file simpler

 Choose rowwise block striped Choose rowwise block striped
decompositiondecomposition

File Input

File

Pop Quiz

Why don’t we input the entire file at once
and then scatter its contents among the
processes, allowing concurrent message
passing?

Point-to-point Communication

 Involves a pair of processesInvolves a pair of processes
 One process sends a messageOne process sends a message
 Other process receives the messageOther process receives the message

Send/Receive Not Collective

Function MPI_Send

int MPI_Send (

 void *message,

 int count,

 MPI_Datatype datatype,

 int dest,

 int tag,

 MPI_Comm comm

)

Function MPI_Recv
int MPI_Recv (

 void *message,

 int count,

 MPI_Datatype datatype,

 int source,

 int tag,

 MPI_Comm comm,

 MPI_Status *status

)

Coding Send/Receive

…
if (ID == j) {
 …
 Receive from I
 …
}
…
if (ID == i) {
 …
 Send to j
 …
}
…

Receive is before Send.
Why does this work?

Inside MPI_Send and MPI_Recv

Sending Process Receiving Process

Program
Memory

System
Buffer

System
Buffer

Program
Memory

MPI_Send MPI_Recv

Return from MPI_Send

 Function blocks until message buffer freeFunction blocks until message buffer free
 Message buffer is free whenMessage buffer is free when

 Message copied to system buffer, orMessage copied to system buffer, or
 Message transmittedMessage transmitted

 Typical scenarioTypical scenario
 Message copied to system bufferMessage copied to system buffer
 Transmission overlaps computationTransmission overlaps computation

Return from MPI_Recv

 Function blocks until message in bufferFunction blocks until message in buffer
 If message never arrives, function never If message never arrives, function never

returnsreturns

Deadlock

 Deadlock: process waiting for a condition Deadlock: process waiting for a condition
that will never become truethat will never become true

 Easy to write send/receive code that Easy to write send/receive code that
deadlocksdeadlocks
 Two processes: both receive before sendTwo processes: both receive before send
 Send tag doesn’t match receive tagSend tag doesn’t match receive tag
 Process sends message to wrong Process sends message to wrong

destination processdestination process

Computational Complexity

 Innermost loop has complexity Innermost loop has complexity ΘΘ((nn))
 Middle loop executed at most Middle loop executed at most n/pn/p times times
 Outer loop executed Outer loop executed nn times times
 Overall complexity Overall complexity ΘΘ((nn33/p/p))

Communication Complexity

 No communication in inner loopNo communication in inner loop
 No communication in middle loopNo communication in middle loop
 Broadcast in outer loop Broadcast in outer loop — complexity is — complexity is

ΘΘ((nn log log pp))
 Overall complexity Overall complexity ΘΘ((nn22 log log pp))

Execution Time Expression (1)

)/4(log/ βλχ npnnpnn ++

Iterations of outer loop
Iterations of middle loop

Cell update time

Iterations of outer loop

Messages per broadcast
Message-passing time

Iterations of inner loop

Computation/communication Overlap

Execution Time Expression (2)

Iterations of outer loop
Iterations of middle loop

Cell update time

Iterations of outer loop

Messages per broadcast
Message-passing time

Iterations of inner loop

 βλχ /4loglog/ nppnnpnn ++
Message transmission

Predicted vs. Actual Performance
Execution Time (sec)Execution Time (sec)

ProcessesProcesses PredictedPredicted ActualActual

11 25.5425.54 25.5425.54

22 13.0213.02 13.8913.89

33 9.019.01 9.609.60

44 6.896.89 7.297.29

55 5.865.86 5.995.99

66 5.015.01 5.165.16

77 4.404.40 4.504.50

88 3.943.94 3.983.98

Summary

 Two matrix decompositionsTwo matrix decompositions
 Rowwise block stripedRowwise block striped
 Columnwise block stripedColumnwise block striped

 Blocking send/receive functionsBlocking send/receive functions
 MPI_SendMPI_Send
 MPI_RecvMPI_Recv

 Overlapping communications with computationsOverlapping communications with computations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

