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Chapter Objectives

® Creating 2-D arrays

® Thinking about “grain size”

® Introducing point-to-point communications
® Reading and printing 2-D matrices

® Analyzing performance when computations
and communications overlap



Outline

® All-pairs shortest path problem
® Dynamic 2-D arrays

® Parallel algorithm design

® Point-to-point communication
® Block row matrix I/O

® Analysis and benchmarking



All-pairs Shortest Path Problem
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Floyd’s Algorithm

for k — 0to n-1
fori — 0ton-1
forj « 0ton-1
ali,j| — min (afij], a[i,k] + a[kj])
endfor
endfor
endfor



Why It Works

Shortest path from i to k&
through O, 1, ..., k-1

Compyted
In previous
Shortest path from i to j iterations

through 0, 1, ..., k-1

Shortest path from £ to j
>through 0,1, ... k1



Dynamic 1-D Array Creation

Run-time Stack A




Dynamic 2-D Array Creation

Run-time Stack
Bstorage B




Designing Parallel Algorithm

® Partitioning
® Communication

B Agglomeration and Mapping



Partitioning

® Domain or functional decomposition?
® Look at pseudocode

® Same assignment statement executed #’
times

® No functional parallelism

® Domain decomposition: divide matrix A
into its #’ elements



Communication
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Agglomeration and Mapping

® Number of tasks: static

® Communication among tasks: structured
® Computation time per task: constant

® Strategy:

¢ Agglomerate tasks to minimize
communication

¢ Create one task per MPI process



Two Data Decompositions

Rowwise block striped Columnwise block striped




Comparing Decompositions

® Columnwise block striped

¢ Broadcast within columns eliminated
® Rowwise block striped

¢ Broadcast within rows eliminated

¢ Reading matrix from file simpler

® Choose rowwise block striped
decomposition



File Input

File
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Pop Quiz

Why don’t we input the entire file at once
and then scatter i1ts contents among the
processes, allowing concurrent message
passing?



Point-to-point Communication

® Involves a pair of processes
® One process sends a message

® Other process receives the message



Send/Receive Not Collective
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Function MPI Send

int MPI_Send (
void
int
MPI Datatype
int
int

MPI_Comm

*message,

count,
datatype,
dest,
tag,

comin



Function MPI Recv

int MPI Recv (
void *message,
int count,

MPI Datatype datatype,

int source,
int tag,
MPI Comm comm,

MPI Status *status



Coding Send/Recelve

if (ID == j) {

Receive from I

Receive i1s before Send.
} Why does this work?

if (ID == i) {

Send to j



Inside MPI Send and MPI Recv

Sending Process Receiving Process
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Return from MPI Send

® Function blocks until message buffer free
® Message buffer 1s free when

¢ Message copied to system buffer, or

® Message transmitted
® Typical scenario

® Message copied to system buffer

¢ Transmission overlaps computation



Return from MPI Recv

® Function blocks until message in buffer

® If message never arrives, function never
returns



Deadlock

® Deadlock: process waiting for a condition
that will never become true

® Easy to write send/receive code that
deadlocks

¢ Two processes: both receive before send
¢ Send tag doesn’t match receive tag

® Process sends message to wrong
destination process



Computational Complexity

® Innermost loop has complexity O(#n)

® Middle loop executed at most Li/plitimes
® QOuter loop executed 7 times

® Overall complexity O(#’/p)



Communication Complexity

® No communication in inner loop
® No communication in middle loop

® Broadcast in outer loop — complexity i1s

O(n log p)
® Overall complexity ©(#’ log p)



Execution Time Expression (1)

Message-passing time
Messages per broadcast

[terations of outer loop

Cell update time

[terations of inner loop

Iterations of middle loop
[terations of outer loop



Computation/communication Overlap

[ ] Compute
Key: [ ] Setup message

B Wait




Execution Time Expression (2)

[terations of outer loop

Cell update time

[terations of inner loop

Iterations of middle loop
[terations of outer loop

t

A A A 4 A
| 1 Message transmission
Message-passing time
Messages per broadcast



Predicted vs. Actual Performance

Execution Time (sec)

Processes Predicted Actual
1 25.54 25.54
2 13.02 13.89
3 9.01 9.60
4 6.89 7.29
5 5.86 5.99
6 5.01 5.16
7 4.40 4.50
8 3.94 3.98



Summary

® Two matrix decompositions
¢ Rowwise block striped
¢ Columnwise block striped
® Blocking send/receive functions
¢ MPI Send
¢* MPI Recv

B Overlapping communications with computations
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