
MPI Interface

Parallel programming



Getting Started with MPI
Introduction

MPI was designed to be a standard implementation 
of the message-passing model of parallel computing

MPI itself is not a library

There are many implementations of MPI:

MPICH,

MPICH2, 

OpenMPI(we will use this), 

LAM/MPI, 

HP/MPI

BoostMPI (c++)



Introduction
MPI program consists of two or more 

autonomous processes

Processes communicate via calls to MPI 
communication routines

Processes are identified according to their 
relative rank within a group (0, 1, . . . , 
groupsize-1)

MPI does not allow for dynamic allocation of 
processes 



MPI Header Files

MPI header files contain the prototypes for:

functions/subroutines

definitions of macros

constants

datatypes used by MPI

#include <mpi.h>



MPI Naming Conventions
The names of all MPI entities (routines, 

constants, types,…) begin with MPI_

 MPI_Xxxxx(parameter, ... )

Example: 

MPI_Init(&argc, &argv) 

MPI_COMM_WORLD

MPI_REAL



Parallel programming
Exit status of a call to an MPI function is returned as an "int"

Example:

int err;

... 

err = MPI_Init(&argc, &argv); 

if (err == MPI_SUCCESS) 

{ 

...

routine ran correctly

... 

}

 ...



MPI Datatypes
MPI allows automatic translation between its own 

datatypes and corresponding datatypes in C

As a general rule, the MPI datatype given in a receive 
must match the MPI datatype specified in the send

Basic MPI Datatypes
 MPI_CHAR

 MPI_INT

 MPI_DOUBLE

Special MPI Datatypes
 MPI_COMM

 MPI_STATUS



Initializing MPI 
The initialization routine MPI_INIT must be 

the first MPI routine called in any MPI 
program

MPI_INIT must be called by all processes

int err; 

... 

err = MPI_Init(&argc, &argv);



Communicators
communicator is a MPI handle that defines a 

group of processes

processor can be a member of a number of 
different communicators

This identifying number is known as the rank of 
the processor in that communicator

If a processor belongs to more than one 
communicator, its rank in each can (and usually 
will) be different

MPI_COMM_WORLD



Getting Communicator 
Information: Rank

MPI_COMM_RANK

Ranks are consecutive and start with 0

A given processor may have different ranks 
in the various communicators to which it 
belongs

 int MPI_Comm_rank(MPI_Comm comm, int *rank);

MPI_COMM - a communicator



Getting Communicator 
Information: Size

A processor can determine the size : MPI_COMM_SIZE
 int MPI_Comm_size(MPI_Comm comm, int *size);

MPI_COMM, a communicator

*size - address of the integer variable size

If the communicator is MPI_COMM_WORLD, the 
number of processors returned from MPI_COMM_SIZE 
equals the number defined by: 

% mpirun -np 4 primer



Terminating MPI
MPI_FINALIZE is the last MPI routine called in a program

It terminates the program by cleaning up all MPI data 
structures, canceling operations that never completed

MPI_FINALIZE must be called by all processes

Once MPI_FINALIZE has been called, no other MPI 
routines (including MPI_INIT) may be called

err = MPI_Finalize();



Hello World!
#include "mpi.h" 

#include <stdio.h> 

int main(int argc, char *argv[]) 

{ 

int id; 

int p; 

MPI_Init(&argc, &argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &id); 
MPI_Comm_size(MPI_COMM_WORLD, &p); 

printf("Hello, world, from process %d\n", id); 

MPI_Finalize(); return 0; 

}



Point-to-Point Communication
Point-to-point communication is the fundamental 

communication facility provided by the MPI library

Conceptually it is simple:

one process sends a message

another process receives it

It is not that simple

Crucial issue is what message to receive?

Another issue is whether send and receive routines 
initiate communication operations and return 
immediately (nonblocking), or wait for the initiated 
communication operation to complete before returning 
(blocking).



Source and Destination
One process (the source) sends

Another process (the destination) receives

In general, the source and destination 
processes operate asynchronously

The source process may complete sending a 
message long before the destination process 
gets around to receiving it

The destination process may initiate receiving 
a message that has not yet been sent



Messages
Messages consist of two parts: the envelope and the 

message body

The envelope of an MPI message has four parts:

Source — the sending process

Destination — the receiving process

Communicator — specifies a group of processes to which both 
source and destination belong 

Tag — used to classify messages 

The message body has three parts:

Buffer — the message data

Datatype — the type of the message data 

Count — the number of items of type datatype in buffer



Sending and Receiving Messages
The source (the identity of the sender) is determined 

implicitly

Envelope and body is given explicitly by the sending 
process

pending messages

Pending messages are not maintained in a simple FIFO 
queue

To receive a message, a process specifies a message 
envelope that MPI compares to the envelopes of 
pending messages

The receiving process must be careful to provide 
enough storage for the entire message



Blocking Send and Receive

MPI_SEND 

MPI_RECV

Both routines block the calling process until 
the communication operation is completed



Sending a Message: MPI_SEND
The message body contains the data to be 

sent: count items of type datatype
int MPI_Send(void *buf, int count, MPI_Datatype dtype, 
int dest, int tag, MPI_Comm comm);

All arguments are input arguments

An error code is returned by the function



Receiving a Message: MPI_RECV
The arguments in the message envelope 

determine what messages can be received

The source, tag, and communicator arguments 
must match

If the received message has more data than the 
receiving process is prepared to accept, it is an 
error and the program will abort

If the sender and receiver use incompatible 
message datatypes, the results are undefined



Receiving a Message: MPI_RECV
The status argument returns information 

about the message that was received
int MPI_Recv(void *buf, int count, MPI_Datatype dtype, int 
source, int tag, MPI_Comm comm, MPI_Status *status); 

buf and status are output arguments; the rest 
are inputs

An error code is returned by the function

The meaning of the second argument: the 
maximum number of elements that the array 
b could hold



Example 01



Runtime Behavior
When a message is sent using MPI_SEND 

one of two things may happen: 

The message may be copied into an MPI 
internal buffer and transferred to its 
destination later, in the background

The message may be left where it is, in the 
program's variables, until the destination 
process is ready to receive it. At that time, 
the message is transferred to its destination



Blocking and Completion
Both MPI_SEND and MPI_RECV block the 

calling processes. Neither returns until the 
communication operation it invoked is 
completed

Messages that are copied into MPI internal 
buffer will occupy buffer space until the 
destination process begins to receive the 
message



Deadlock

When two (or more) processes are blocked 
and each is waiting for the other to make 
progress, deadlock occurs



Example 02 - Deadlock


	Slide 1
	Getting Started with MPI Introduction
	Introduction
	MPI Header Files
	MPI Naming Conventions
	Parallel programming
	MPI Datatypes
	Initializing MPI
	Communicators
	Getting Communicator Information: Rank
	Getting Communicator Information: Size
	Terminating MPI
	Hello World!
	Point-to-Point Communication
	Source and Destination
	Messages
	Sending and Receiving Messages
	Blocking Send and Receive
	Sending a Message: MPI_SEND
	Receiving a Message: MPI_RECV
	Receiving a Message: MPI_RECV
	Example 01
	Runtime Behavior
	Blocking and Completion
	Deadlock
	Example 02 - Deadlock

