
MPI Interface

Parallel programming



Getting Started with MPI
Introduction

MPI was designed to be a standard implementation 
of the message-passing model of parallel computing

MPI itself is not a library

There are many implementations of MPI:

MPICH,

MPICH2, 

OpenMPI(we will use this), 

LAM/MPI, 

HP/MPI

BoostMPI (c++)



Introduction
MPI program consists of two or more 

autonomous processes

Processes communicate via calls to MPI 
communication routines

Processes are identified according to their 
relative rank within a group (0, 1, . . . , 
groupsize-1)

MPI does not allow for dynamic allocation of 
processes 



MPI Header Files

MPI header files contain the prototypes for:

functions/subroutines

definitions of macros

constants

datatypes used by MPI

#include <mpi.h>



MPI Naming Conventions
The names of all MPI entities (routines, 

constants, types,…) begin with MPI_

 MPI_Xxxxx(parameter, ... )

Example: 

MPI_Init(&argc, &argv) 

MPI_COMM_WORLD

MPI_REAL



Parallel programming
Exit status of a call to an MPI function is returned as an "int"

Example:

int err;

... 

err = MPI_Init(&argc, &argv); 

if (err == MPI_SUCCESS) 

{ 

...

routine ran correctly

... 

}

 ...



MPI Datatypes
MPI allows automatic translation between its own 

datatypes and corresponding datatypes in C

As a general rule, the MPI datatype given in a receive 
must match the MPI datatype specified in the send

Basic MPI Datatypes
 MPI_CHAR

 MPI_INT

 MPI_DOUBLE

Special MPI Datatypes
 MPI_COMM

 MPI_STATUS



Initializing MPI 
The initialization routine MPI_INIT must be 

the first MPI routine called in any MPI 
program

MPI_INIT must be called by all processes

int err; 

... 

err = MPI_Init(&argc, &argv);



Communicators
communicator is a MPI handle that defines a 

group of processes

processor can be a member of a number of 
different communicators

This identifying number is known as the rank of 
the processor in that communicator

If a processor belongs to more than one 
communicator, its rank in each can (and usually 
will) be different

MPI_COMM_WORLD



Getting Communicator 
Information: Rank

MPI_COMM_RANK

Ranks are consecutive and start with 0

A given processor may have different ranks 
in the various communicators to which it 
belongs

 int MPI_Comm_rank(MPI_Comm comm, int *rank);

MPI_COMM - a communicator



Getting Communicator 
Information: Size

A processor can determine the size : MPI_COMM_SIZE
 int MPI_Comm_size(MPI_Comm comm, int *size);

MPI_COMM, a communicator

*size - address of the integer variable size

If the communicator is MPI_COMM_WORLD, the 
number of processors returned from MPI_COMM_SIZE 
equals the number defined by: 

% mpirun -np 4 primer



Terminating MPI
MPI_FINALIZE is the last MPI routine called in a program

It terminates the program by cleaning up all MPI data 
structures, canceling operations that never completed

MPI_FINALIZE must be called by all processes

Once MPI_FINALIZE has been called, no other MPI 
routines (including MPI_INIT) may be called

err = MPI_Finalize();



Hello World!
#include "mpi.h" 

#include <stdio.h> 

int main(int argc, char *argv[]) 

{ 

int id; 

int p; 

MPI_Init(&argc, &argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &id); 
MPI_Comm_size(MPI_COMM_WORLD, &p); 

printf("Hello, world, from process %d\n", id); 

MPI_Finalize(); return 0; 

}



Point-to-Point Communication
Point-to-point communication is the fundamental 

communication facility provided by the MPI library

Conceptually it is simple:

one process sends a message

another process receives it

It is not that simple

Crucial issue is what message to receive?

Another issue is whether send and receive routines 
initiate communication operations and return 
immediately (nonblocking), or wait for the initiated 
communication operation to complete before returning 
(blocking).



Source and Destination
One process (the source) sends

Another process (the destination) receives

In general, the source and destination 
processes operate asynchronously

The source process may complete sending a 
message long before the destination process 
gets around to receiving it

The destination process may initiate receiving 
a message that has not yet been sent



Messages
Messages consist of two parts: the envelope and the 

message body

The envelope of an MPI message has four parts:

Source — the sending process

Destination — the receiving process

Communicator — specifies a group of processes to which both 
source and destination belong 

Tag — used to classify messages 

The message body has three parts:

Buffer — the message data

Datatype — the type of the message data 

Count — the number of items of type datatype in buffer



Sending and Receiving Messages
The source (the identity of the sender) is determined 

implicitly

Envelope and body is given explicitly by the sending 
process

pending messages

Pending messages are not maintained in a simple FIFO 
queue

To receive a message, a process specifies a message 
envelope that MPI compares to the envelopes of 
pending messages

The receiving process must be careful to provide 
enough storage for the entire message



Blocking Send and Receive

MPI_SEND 

MPI_RECV

Both routines block the calling process until 
the communication operation is completed



Sending a Message: MPI_SEND
The message body contains the data to be 

sent: count items of type datatype
int MPI_Send(void *buf, int count, MPI_Datatype dtype, 
int dest, int tag, MPI_Comm comm);

All arguments are input arguments

An error code is returned by the function



Receiving a Message: MPI_RECV
The arguments in the message envelope 

determine what messages can be received

The source, tag, and communicator arguments 
must match

If the received message has more data than the 
receiving process is prepared to accept, it is an 
error and the program will abort

If the sender and receiver use incompatible 
message datatypes, the results are undefined



Receiving a Message: MPI_RECV
The status argument returns information 

about the message that was received
int MPI_Recv(void *buf, int count, MPI_Datatype dtype, int 
source, int tag, MPI_Comm comm, MPI_Status *status); 

buf and status are output arguments; the rest 
are inputs

An error code is returned by the function

The meaning of the second argument: the 
maximum number of elements that the array 
b could hold



Example 01



Runtime Behavior
When a message is sent using MPI_SEND 

one of two things may happen: 

The message may be copied into an MPI 
internal buffer and transferred to its 
destination later, in the background

The message may be left where it is, in the 
program's variables, until the destination 
process is ready to receive it. At that time, 
the message is transferred to its destination



Blocking and Completion
Both MPI_SEND and MPI_RECV block the 

calling processes. Neither returns until the 
communication operation it invoked is 
completed

Messages that are copied into MPI internal 
buffer will occupy buffer space until the 
destination process begins to receive the 
message



Deadlock

When two (or more) processes are blocked 
and each is waiting for the other to make 
progress, deadlock occurs



Example 02 - Deadlock


	Slide 1
	Getting Started with MPI Introduction
	Introduction
	MPI Header Files
	MPI Naming Conventions
	Parallel programming
	MPI Datatypes
	Initializing MPI
	Communicators
	Getting Communicator Information: Rank
	Getting Communicator Information: Size
	Terminating MPI
	Hello World!
	Point-to-Point Communication
	Source and Destination
	Messages
	Sending and Receiving Messages
	Blocking Send and Receive
	Sending a Message: MPI_SEND
	Receiving a Message: MPI_RECV
	Receiving a Message: MPI_RECV
	Example 01
	Runtime Behavior
	Blocking and Completion
	Deadlock
	Example 02 - Deadlock

