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Chapter 7

Performance Analysis



Learning Objectives

 Predict performance of parallel programs

 Understand barriers to higher performance



Outline

 General speedup formula

 Amdahl’s Law

 Gustafson-Barsis’ Law

 Karp-Flatt metric

 Isoefficiency metric



Speedup Formula
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Execution Time Components

 Inherently sequential computations:  (n)

sigma

 Potentially parallel computations: (n)

phi

 Communication operations: (n,p)

kappa



Speedup Expression

),(/)()(

)()(
),(

pnpnn

nn
pn











(Speedup: si)



(n)/p



(n,p)



(n)/p + (n,p)



Speedup Plot

“elbowing out”



Efficiency
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Efficiency is a fraction:

0  (n,p)  1 (Epsilon)
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All terms > 0  (n,p) > 0

Denominator > numerator  (n,p) < 1



Amdahl’s Law
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Let f = (n)/((n) + (n));  i.e., f  is the 

fraction of the code which is inherently sequential 
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Example 1

 95% of a program’s execution time occurs 

inside a loop that can be executed in 

parallel. What is the maximum speedup we 

should expect from a parallel version of the 

program executing on 8 CPUs?
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Example 2

 20% of a program’s execution time is spent 

within inherently sequential code. What is 

the limit to the speedup achievable by a 

parallel version of the program?
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Pop Quiz

 An oceanographer gives you a serial 
program and asks you how much faster it 
might run on 8 processors. You can only 
find one function amenable to a parallel 
solution. Benchmarking on a single 
processor reveals 80% of the execution time 
is spent inside this function. What is the 
best speedup a parallel version is likely to 
achieve on 8 processors?



Pop Quiz

 A computer animation program generates a 

feature movie frame-by-frame. Each frame 

can be generated independently and is 

output to its own file. If it takes 99 seconds 

to render a frame and 1 second to output it, 

how much speedup can be achieved by 

rendering the movie on 100 processors?



Limitations of Amdahl’s Law

 Ignores (n,p) - overestimates speedup

 Assumes f constant, so underestimates 

speedup achievable 



Amdahl Effect

 Typically (n) and (n,p) have lower 

complexity than (n)/p

 As n increases, (n)/p dominates (n) & 

(n,p)

 As n increases, speedup increases

 As n increases, sequential fraction f 

decreases.



Illustration of Amdahl Effect

n = 100

n = 1,000

n = 10,000
Speedup

Processors



Review of Amdahl’s Law

 Treats problem size as a constant

 Shows how execution time decreases as 

number of processors increases



Another Perspective

 We often use faster computers to solve 

larger problem instances

 Let’s treat time as a constant and allow 

problem size to increase with number of 

processors



Gustafson-Barsis’s Law
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Let Tp = (n)+(n)/p = 1 unit

Let s be the fraction of time that a parallel program 

spends executing the serial portion of the code.

s  = (n)/((n)+(n)/p)

Then,

 = T1/Tp = T1 <= s + p*(1-s)      (the scaled speedup)

spp )1( 

Thus, sequential time would be p times the parallelized portion 

of the code plus the time for the sequential portion.



Gustafson-Barsis’s Law

 <= s + p*(1-s)      (the scaled speedup)

Restated, spp )1( 

Thus, sequential time would be p times the parallel execution time 

minus (p-1) times the sequential portion of execution time.



Gustafson-Barsis’s Law

 Begin with parallel execution time and estimate 
the time spent in sequential portion.

 Predicts scaled speedup (Sp -  - same as T1)

 Estimate sequential execution time to solve same 
problem (s)

 Assumes that s remains fixed irrespective of how 
large is p - thus overestimates speedup.

 Problem size (s + p*(1-s)) is an increasing function 
of p



Example 1

 An application running on 10 processors 

spends 3% of its time in serial code. What is 

the scaled speedup of the application?

73.927.010)03.0)(101(10 

Execution on 1 CPU takes 10 times as long…

…except 9 do not have to execute serial code



Example 2

 What is the maximum fraction of a 

program’s parallel execution time that can 

be spent in serial code if it is to achieve a 

scaled speedup of 7 on 8 processors?

14.0)81(87  ss



Pop Quiz

 A parallel program executing on 32 

processors spends 5% of its time in 

sequential code. What is the scaled speedup 

of this program?



The Karp-Flatt Metric

 Amdahl’s Law and Gustafson-Barsis’ Law 

ignore (n,p)

 They can overestimate speedup or scaled 

speedup

 Karp and Flatt proposed another metric



Experimentally Determined 

Serial Fraction
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Inherently serial component

of parallel computation +

processor communication and

synchronization overhead

Single processor execution time
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Experimentally Determined 

Serial Fraction

 Takes into account parallel overhead

 Detects other sources of overhead or 

inefficiency ignored in speedup model

Process startup time

Process synchronization time

 Imbalanced workload

Architectural overhead



Example 1

p 2 3 4 5 6 7

1.8 2.5 3.1 3.6 4.0 4.4

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Since e is constant, large serial fraction is the primary reason.



Example 2

p 2 3 4 5 6 7

1.9 2.6 3.2 3.7 4.1 4.5

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Since e is steadily increasing, overhead is the primary reason.



Isoefficiency Metric

 Parallel system: parallel program executing 
on a parallel computer

 Scalability of a parallel system: measure of 
its ability to increase performance as 
number of processors increases

 A scalable system maintains efficiency as 
processors are added

 Isoefficiency: way to measure scalability



Isoefficiency Derivation Steps

 Begin with speedup formula

 Compute total amount of overhead

 Assume efficiency remains constant

 Determine relation between sequential 

execution time and overhead



Deriving Isoefficiency Relation
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Determine overhead

Substitute overhead into speedup equation
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Substitute T(n,1) = (n) + (n). Assume efficiency is constant. 

Hence, T0/T1 should be a constant fraction.

),()1,( 0 pnCTnT  Isoefficiency Relation



Scalability Function

 Suppose isoefficiency relation is n  f(p)

 Let M(n) denote memory required for 

problem of size n

 M(f(p))/p shows how memory usage per 

processor must increase to maintain same 

efficiency

 We call M(f(p))/p the scalability function



Meaning of Scalability Function

 To maintain efficiency when increasing p, we 

must increase n

 Maximum problem size limited by available 

memory, which is linear in p

 Scalability function shows how memory usage per 

processor must grow to maintain efficiency

 Scalability function a constant means parallel 

system is perfectly scalable



Interpreting Scalability Function
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Example 1: Reduction

 Sequential algorithm complexity

T(n,1) = (n)

 Parallel algorithm

Computational complexity = (n/p)

Communication complexity = (log p)

 Parallel overhead

T0(n,p) = (p log p)



Reduction (continued)

 Isoefficiency relation: n  C p log p

 We ask: To maintain same level of 
efficiency, how must n increase when p
increases?

 M(n) = n

 The system has good scalability

pCppCpppCpM log/log/)log( 



Example 2: Floyd’s Algorithm

 Sequential time complexity: (n3)

 Parallel computation time: (n3/p)

 Parallel communication time: (n2log p)

 Parallel overhead: T0(n,p) = (pn2log p)



Floyd’s Algorithm (continued)

 Isoefficiency relation

n3 C(p n3 log p)  n  C p log p

 M(n) = n2

 The parallel system has poor scalability

ppCpppCppCpM 22222 log/log/)log( 



Example 3: Finite Difference

 Sequential time complexity per iteration: 

(n2)

 Parallel communication complexity per 

iteration: (n/p)

 Parallel overhead: (n p)



Finite Difference (continued)

 Isoefficiency relation

n2 Cnp  n  C p

 M(n) = n2

 This algorithm is perfectly scalable

22 //)( CppCppCM 



Summary (1/3)

 Performance terms

Speedup

Efficiency

 Model of speedup

Serial component

Parallel component

Communication component



Summary (2/3)

 What prevents linear speedup?

Serial operations

Communication operations

Process start-up

 Imbalanced workloads

Architectural limitations



Summary (3/3)

 Analyzing parallel performance

Amdahl’s Law

Gustafson-Barsis’ Law

Karp-Flatt metric

 Isoefficiency metric


