Parallel Programming

Michael J. Quinn

Performance Analysis

earning Objectives

m Predict performance of parallel programs
m Understand barriers to higher performance

Outline

m General speedup formula
m Amdahl’s Law

m Gustafson-Barsis’ Law

m Karp-Flatt metric

m Isoefficiency metric

Speedup Formula

Sequential execution time

Speedup =

Parallel execution time

Execution Time Components

m Inherently sequential computations: o(n)
¢ Sigma

= Potentially parallel computations: ¢(n)
¢ phi

= Communication operations: x(n,p)
¢ kappa

Speedup Expression

o(n)+e(n)
o(n)+en)/ p+x(n, p)

w(n, p)<

(Speedup: si)

e(n)/p

N(HY)

¢(n)/p + x(n,p)

Speedup Plot

“elbowing out™

Efficiency

Sequential execution time
Processors ~ Parallel execution time

Efficiency =

Speedup

Efficiency =
Processors

Efficiency Is a fraction:
0 <eg(n,p) <1 (Epsilon)

s oy <o) +o(n)

po(n) +@(n) + px(n, p)

All terms >0 = ¢(n,p) > 0

Denominator > numerator = g(n,p) <1

Amdahl’s Law

o(n) +¢(n)
o(n) +¢(n)/ p+x(n, p)
__o(n)+e(n)

" o(n) +g(n)/ p

w(n, p) <

Let f = o(n)/(c(n) + o(n)); i.e., f is the
fraction of the code which is inherently sequential

1

< -
i a-H)/p

Example 1

m 95% of a program’s execution time occurs
Inside a loop that can be executed In
parallel. What Is the maximum speedup we
should expect from a parallel version of the
program executing on 8 CPUs?

1

4

<— =~ @ ~59
0.05+(1-0.05)/8

Example 2

m 20% of a program’s execution time 1s spent
within inherently sequential code. What Is
the limit to the speedup achievable by a
parallel version of the program?

1 1
lim

p>=0.2+(1-0.2)/ p 02

Pop Quiz

= An oceanographer gives you a serial
program and asks you how much faster it
might run on 8 processors. You can only
find one function amenable to a parallel
solution. Benchmarking on a single
processor reveals 80% of the execution time
IS spent inside this function. \What Is the
best speedup a parallel version is likely to
achieve on 8 processors?

Pop Quiz

= A computer animation program generates a
feature movie frame-by-frame. Each frame
can be generated independently and Is
output to its own file. If it takes 99 seconds
to render a frame and 1 second to output It,
how much speedup can be achieved by
rendering the movie on 100 processors?

[Limitations of Amdahl’s Law

= Ignores k(n,p) - overestimates speedup

m Assumes f constant, so underestimates
speedup achievable

Amdahl Effect

m Typically o(n) and «(n,p) have lower
complexity than ¢(n)/p

m As n increases, @(n)/p dominates o(n) &
k(n,p)

m As n Increases, speedup Increases

= As n Increases, sequential fraction f
decreases.

[llustration of Amdahl Effect

Speedup 10,000
n=10,

— n=1,000

Processors

Review of Amdahl’s Law

m Treats problem size as a constant

m Shows how execution time decreases as
number of processors Increases

Another Perspective

= \We often use faster computers to solve
larger problem instances

m [et’s treat time as a constant and allow
oroblem size to increase with number of
DroCessors

Gustafson-Barsis’s Law
o(n)+oe(n)

w(n, p) <

a(n)+p(n)/ p
et T, =o(n)+e(n)/p =1 unit

Let s be the fraction of time that a parallel program
spends executing the serial portion of the code.

= o(n)/(s(n)+e(n)/p)
Then,
Y=T,J/T,=T;<=s+p*(1-s) (the scaled speedup)

Thus, sequential time would be p times the parallelized portion
of the code plus the time for the sequential portion.

< p+(1-p)s

Gustafson-Barsis’s Law

Y <=s+p*(-s) (the scaled speedup)
ENEC] W < D+ (]__ p) S

Thus, sequential time would be p times the parallel execution time
minus (p-1) times the sequential portion of execution time.

Gustafson-Barsis’s Law

m Begin with parallel execution time and estimate
the time spent In sequential portion.

= Predicts scaled speedup (Sp - v - same as T,)

m Estimate sequential execution time to solve same
problem (s)

m Assumes that s remains fixed irrespective of how
large Is p - thus overestimates speedup.

= Problem size (s + p*(1-s)) IS an increasing function
of p

Example 1

= An application running on 10 processors
spends 3% of its time In serial code. What IS
the scaled speedup of the application?

w =10+ (1—10)(0.03) =10—0.27 =9.73

|

...except 9 do not have to execute serial code

Execution on 1 CPU takes 10 times as long...

Example 2

= What Is the maximum fraction of a
program’s parallel execution time that can
be spent In serial code If It Is to achieve a
scaled speedup of 7 on 8 processors?

[=8+(1-8)s=s5~0.14

Pop Quiz

m A parallel program executing on 32
processors spends 5% of Its time In
sequential code. What Is the scaled speedup
of this program?

The Karp-Flatt Metric

m Amdahl’s Law and Gustafson-Barsis’ Law
Ignore k(n,p)

m They can overestimate speedup or scaled
Speedup

m Karp and Flatt proposed another metric

Experimentally Determined
Serial Fraction

Inherently serial component
of parallel computation +
processor communication and

g(n) + K(n, p) synchronization overhead
- m Single processor execution time

Experimentally Determined
Serial Fraction

= Takes into account parallel overhead

m Detects other sources of overhead or
Inefficiency ignored In speedup model

¢ Process startup time

¢ Process synchronization time
+ Imbalanced workload

¢ Architectural overhead

Example 1

pl2]slals o7 e

o125 01 3000 14 17

What is the primary reason for speedup of only 4.7 on 8 CPUs?

"+ 0101 01 010101 01

Since e Is constant, large serial fraction is the primary reason.

Example 2

pl2]slals o7 e

1o 20 02 3701 15 07

What is the primary reason for speedup of only 4.7 on 8 CPUs?

0.070 0.075|0.080{0.085|0.090|0.095|0.100

Since e Is steadily increasing, overhead is the primary reason.

|soefficiency Metric

m Parallel system: parallel program executing
on a parallel computer

m Scalability of a parallel system: measure of
Its ability to Iincrease performance as
number of processors Increases

= A scalable system maintains efficiency as
processors are added

m Isoefficiency: way to measure scalability

Isoefficiency Derivation Steps

= Begin with speedup formula
= Compute total amount of overhead
= Assume efficiency remains constant

= Determine relation between sequential
execution time and overhead

Deriving Isoefficiency Relation

Determine overhead

T,(n, p)=(p—-Do(n)+px(n, p)

Substitute overhead into speedup equation

p(o(n)+e(n))
(N, P) < civremrm 0 m)

Substitute T(n,1) = o(n) + @(n). Assume efficiency Is constant.
Hence, T,/T, should be a constant fraction.

T(nD)>CT,(n, p) BE Gt S A G

Scalability Function

m Suppose Isoefficiency relation is n = f(p)

= et M(n) denote memory required for
problem of size n

= M(f(p))/p shows how memory usage per
Processor must increase to maintain same
efficiency

= We call M(f(p))/p the scalability function

Meaning of Scalability Function

m To maintain efficiency when increasing p, we
must Increase n

m Maximum problem size limited by available
memory, which is linear in p

m Scalability function shows how memory usage per
processor must grow to maintain efficiency

m Scalability function a constant means parallel
system Is perfectly scalable

Interpreting Scalability Function

Cplogp

Cannot maintain
efficiency

Memory Size

Can maintain
efficiency

Memory needed per processor

Number of processors

Example 1: Reduction

m Sequential algorithm complexity
T(n,1) = ©(n)
= Parallel algorithm
+ Computational complexity = ®(n/p)
+ Communication complexity = ©(log p)

m Parallel overhead
To(n,p) = ©(p log p)

Reduction (continued)

m Isoefficiency relation: n>C p log p

m We ask: To maintain same level of
efficiency, how must n increase when p
Increases?

= M(n) =n
M (Cplogp)/ p =Cplogp/ p = Clogp

m The system has good scalability

Example 2: Floyd’s Algorithm

m Sequential time complexity: ©(n3)

Parallel computation time: ®©(n3/p)
Parallel communication time: ®(n?log p)

Parallel overhead: T,(n,p) = ®(pn?log p)

Floyd’s Algorithm (continued)

m Isoefficiency relation
n>C(pnilogp) =n=>Cplogp

® M(n) =n?

M (Cplogp)/ p=C*p*log® p/ p=C’plog* p

m The parallel system has poor scalability

Example 3: Finite Difference

m Sequential time complexity per Iteration:
O(n?)

m Parallel communication complexity per
iteration: ®(n/A\p)

= Parallel overhead: ®(n Vp)

Finite Difference (continued)

m Isoefficiency relation
N2> Cnp=n=CVp

® M(n) =n?

M(C./p)/ p=C?p/p=C*

= This algorithm Is perfectly scalable

Summary (1/3)

= Performance terms
¢ Speedup
¢ Efficiency
= Model of speedup
¢ Serial component
¢ Parallel component
+ Communication component

Summary (2/3)

= \What prevents linear speedup?
¢ Serial operations
+ Communication operations
+ Process start-up
+ Imbalanced workloads
o Architectural limitations

Summary (3/3)

m Analyzing parallel performance
o Amdahl’s Law
¢ Gustafson-Barsis’ Law
¢ Karp-Flatt metric
¢ Isoefficiency metric

