
Parallel Programming
with MPI and OpenMP

Michael J. Quinn

Chapter 7

Performance Analysis

Learning Objectives

 Predict performance of parallel programs

 Understand barriers to higher performance

Outline

 General speedup formula

 Amdahl’s Law

 Gustafson-Barsis’ Law

 Karp-Flatt metric

 Isoefficiency metric

Speedup Formula

timeexecution Parallel

timeexecution Sequential
 Speedup 

Execution Time Components

 Inherently sequential computations: (n)

sigma

 Potentially parallel computations: (n)

phi

 Communication operations: (n,p)

kappa

Speedup Expression

),(/)()(

)()(
),(

pnpnn

nn
pn











(Speedup: si)

(n)/p

(n,p)

(n)/p + (n,p)

Speedup Plot

“elbowing out”

Efficiency

used Processors

Speedup
 Efficiency

timeexecution Parallel used Processors

timeexecution Sequential
 Efficiency






Processors

Speedup
Efficiency

timeexecution ParallelProcessors

timeexecution Sequential
Efficiency



´


Efficiency is a fraction:

0  (n,p)  1 (Epsilon)

),()()(

)()(
),(

pnpnnp

nn
pn











All terms > 0  (n,p) > 0

Denominator > numerator  (n,p) < 1

Amdahl’s Law

pnn

nn

pnpnn

nn
pn

/)()(

)()(

),(/)()(

)()(
),(




















Let f = (n)/((n) + (n)); i.e., f is the

fraction of the code which is inherently sequential

pff /)1(

1




Example 1

 95% of a program’s execution time occurs

inside a loop that can be executed in

parallel. What is the maximum speedup we

should expect from a parallel version of the

program executing on 8 CPUs?

9.5
8/)05.01(05.0

1





Example 2

 20% of a program’s execution time is spent

within inherently sequential code. What is

the limit to the speedup achievable by a

parallel version of the program?

5
2.0

1

/)2.01(2.0

1
lim 

 pp

Pop Quiz

 An oceanographer gives you a serial
program and asks you how much faster it
might run on 8 processors. You can only
find one function amenable to a parallel
solution. Benchmarking on a single
processor reveals 80% of the execution time
is spent inside this function. What is the
best speedup a parallel version is likely to
achieve on 8 processors?

Pop Quiz

 A computer animation program generates a

feature movie frame-by-frame. Each frame

can be generated independently and is

output to its own file. If it takes 99 seconds

to render a frame and 1 second to output it,

how much speedup can be achieved by

rendering the movie on 100 processors?

Limitations of Amdahl’s Law

 Ignores (n,p) - overestimates speedup

 Assumes f constant, so underestimates

speedup achievable

Amdahl Effect

 Typically (n) and (n,p) have lower

complexity than (n)/p

 As n increases, (n)/p dominates (n) &

(n,p)

 As n increases, speedup increases

 As n increases, sequential fraction f

decreases.

Illustration of Amdahl Effect

n = 100

n = 1,000

n = 10,000
Speedup

Processors

Review of Amdahl’s Law

 Treats problem size as a constant

 Shows how execution time decreases as

number of processors increases

Another Perspective

 We often use faster computers to solve

larger problem instances

 Let’s treat time as a constant and allow

problem size to increase with number of

processors

Gustafson-Barsis’s Law

pnn

nn
pn

/)()(

)()(
),(











Let Tp = (n)+(n)/p = 1 unit

Let s be the fraction of time that a parallel program

spends executing the serial portion of the code.

s = (n)/((n)+(n)/p)

Then,

 = T1/Tp = T1 <= s + p*(1-s) (the scaled speedup)

spp)1(

Thus, sequential time would be p times the parallelized portion

of the code plus the time for the sequential portion.

Gustafson-Barsis’s Law

 <= s + p*(1-s) (the scaled speedup)

Restated, spp)1(

Thus, sequential time would be p times the parallel execution time

minus (p-1) times the sequential portion of execution time.

Gustafson-Barsis’s Law

 Begin with parallel execution time and estimate
the time spent in sequential portion.

 Predicts scaled speedup (Sp -  - same as T1)

 Estimate sequential execution time to solve same
problem (s)

 Assumes that s remains fixed irrespective of how
large is p - thus overestimates speedup.

 Problem size (s + p*(1-s)) is an increasing function
of p

Example 1

 An application running on 10 processors

spends 3% of its time in serial code. What is

the scaled speedup of the application?

73.927.010)03.0)(101(10 

Execution on 1 CPU takes 10 times as long…

…except 9 do not have to execute serial code

Example 2

 What is the maximum fraction of a

program’s parallel execution time that can

be spent in serial code if it is to achieve a

scaled speedup of 7 on 8 processors?

14.0)81(87  ss

Pop Quiz

 A parallel program executing on 32

processors spends 5% of its time in

sequential code. What is the scaled speedup

of this program?

The Karp-Flatt Metric

 Amdahl’s Law and Gustafson-Barsis’ Law

ignore (n,p)

 They can overestimate speedup or scaled

speedup

 Karp and Flatt proposed another metric

Experimentally Determined

Serial Fraction

)()(

),()(

nn

pnn
e










Inherently serial component

of parallel computation +

processor communication and

synchronization overhead

Single processor execution time

p

p
e

/11

/1/1








Experimentally Determined

Serial Fraction

 Takes into account parallel overhead

 Detects other sources of overhead or

inefficiency ignored in speedup model

Process startup time

Process synchronization time

 Imbalanced workload

Architectural overhead

Example 1

p 2 3 4 5 6 7

1.8 2.5 3.1 3.6 4.0 4.4

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Since e is constant, large serial fraction is the primary reason.

Example 2

p 2 3 4 5 6 7

1.9 2.6 3.2 3.7 4.1 4.5

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Since e is steadily increasing, overhead is the primary reason.

Isoefficiency Metric

 Parallel system: parallel program executing
on a parallel computer

 Scalability of a parallel system: measure of
its ability to increase performance as
number of processors increases

 A scalable system maintains efficiency as
processors are added

 Isoefficiency: way to measure scalability

Isoefficiency Derivation Steps

 Begin with speedup formula

 Compute total amount of overhead

 Assume efficiency remains constant

 Determine relation between sequential

execution time and overhead

Deriving Isoefficiency Relation

),()()1(),(pnpnppnTo  

Determine overhead

Substitute overhead into speedup equation

),()()(

))()((

0
),(

pnTnn

nnp
pn










Substitute T(n,1) = (n) + (n). Assume efficiency is constant.

Hence, T0/T1 should be a constant fraction.

),()1,(0 pnCTnT  Isoefficiency Relation

Scalability Function

 Suppose isoefficiency relation is n  f(p)

 Let M(n) denote memory required for

problem of size n

 M(f(p))/p shows how memory usage per

processor must increase to maintain same

efficiency

 We call M(f(p))/p the scalability function

Meaning of Scalability Function

 To maintain efficiency when increasing p, we

must increase n

 Maximum problem size limited by available

memory, which is linear in p

 Scalability function shows how memory usage per

processor must grow to maintain efficiency

 Scalability function a constant means parallel

system is perfectly scalable

Interpreting Scalability Function

Number of processors

M
em

o
ry

 n
ee

d
ed

 p
er

 p
ro

ce
ss

o
r Cplogp

Cp

Clogp

C

Memory Size

Can maintain

efficiency

Cannot maintain

efficiency

Example 1: Reduction

 Sequential algorithm complexity

T(n,1) = (n)

 Parallel algorithm

Computational complexity = (n/p)

Communication complexity = (log p)

 Parallel overhead

T0(n,p) = (p log p)

Reduction (continued)

 Isoefficiency relation: n  C p log p

 We ask: To maintain same level of
efficiency, how must n increase when p
increases?

 M(n) = n

 The system has good scalability

pCppCpppCpM log/log/)log(

Example 2: Floyd’s Algorithm

 Sequential time complexity: (n3)

 Parallel computation time: (n3/p)

 Parallel communication time: (n2log p)

 Parallel overhead: T0(n,p) = (pn2log p)

Floyd’s Algorithm (continued)

 Isoefficiency relation

n3 C(p n3 log p)  n  C p log p

 M(n) = n2

 The parallel system has poor scalability

ppCpppCppCpM 22222 log/log/)log(

Example 3: Finite Difference

 Sequential time complexity per iteration:

(n2)

 Parallel communication complexity per

iteration: (n/p)

 Parallel overhead: (n p)

Finite Difference (continued)

 Isoefficiency relation

n2 Cnp  n  C p

 M(n) = n2

 This algorithm is perfectly scalable

22 //)(CppCppCM 

Summary (1/3)

 Performance terms

Speedup

Efficiency

 Model of speedup

Serial component

Parallel component

Communication component

Summary (2/3)

 What prevents linear speedup?

Serial operations

Communication operations

Process start-up

 Imbalanced workloads

Architectural limitations

Summary (3/3)

 Analyzing parallel performance

Amdahl’s Law

Gustafson-Barsis’ Law

Karp-Flatt metric

 Isoefficiency metric

