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Chapter 7

Performance Analysis



Learning Objectives

 Predict performance of parallel programs

 Understand barriers to higher performance



Outline

 General speedup formula

 Amdahl’s Law

 Gustafson-Barsis’ Law

 Karp-Flatt metric

 Isoefficiency metric



Speedup Formula
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Execution Time Components

 Inherently sequential computations:  (n)

sigma

 Potentially parallel computations: (n)

phi

 Communication operations: (n,p)

kappa



Speedup Expression
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(Speedup: si)



(n)/p



(n,p)



(n)/p + (n,p)



Speedup Plot

“elbowing out”



Efficiency

used Processors

Speedup
  Efficiency

timeexecution  Parallel  used Processors

timeexecution  Sequential
  Efficiency






Processors

Speedup
Efficiency

timeexecution ParallelProcessors

timeexecution Sequential
Efficiency



´




Efficiency is a fraction:

0  (n,p)  1 (Epsilon)
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All terms > 0  (n,p) > 0

Denominator > numerator  (n,p) < 1



Amdahl’s Law
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Let f = (n)/((n) + (n));  i.e., f  is the 

fraction of the code which is inherently sequential 
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Example 1

 95% of a program’s execution time occurs 

inside a loop that can be executed in 

parallel. What is the maximum speedup we 

should expect from a parallel version of the 

program executing on 8 CPUs?
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Example 2

 20% of a program’s execution time is spent 

within inherently sequential code. What is 

the limit to the speedup achievable by a 

parallel version of the program?
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Pop Quiz

 An oceanographer gives you a serial 
program and asks you how much faster it 
might run on 8 processors. You can only 
find one function amenable to a parallel 
solution. Benchmarking on a single 
processor reveals 80% of the execution time 
is spent inside this function. What is the 
best speedup a parallel version is likely to 
achieve on 8 processors?



Pop Quiz

 A computer animation program generates a 

feature movie frame-by-frame. Each frame 

can be generated independently and is 

output to its own file. If it takes 99 seconds 

to render a frame and 1 second to output it, 

how much speedup can be achieved by 

rendering the movie on 100 processors?



Limitations of Amdahl’s Law

 Ignores (n,p) - overestimates speedup

 Assumes f constant, so underestimates 

speedup achievable 



Amdahl Effect

 Typically (n) and (n,p) have lower 

complexity than (n)/p

 As n increases, (n)/p dominates (n) & 

(n,p)

 As n increases, speedup increases

 As n increases, sequential fraction f 

decreases.



Illustration of Amdahl Effect

n = 100

n = 1,000

n = 10,000
Speedup

Processors



Review of Amdahl’s Law

 Treats problem size as a constant

 Shows how execution time decreases as 

number of processors increases



Another Perspective

 We often use faster computers to solve 

larger problem instances

 Let’s treat time as a constant and allow 

problem size to increase with number of 

processors



Gustafson-Barsis’s Law
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Let Tp = (n)+(n)/p = 1 unit

Let s be the fraction of time that a parallel program 

spends executing the serial portion of the code.

s  = (n)/((n)+(n)/p)

Then,

 = T1/Tp = T1 <= s + p*(1-s)      (the scaled speedup)

spp )1( 

Thus, sequential time would be p times the parallelized portion 

of the code plus the time for the sequential portion.



Gustafson-Barsis’s Law

 <= s + p*(1-s)      (the scaled speedup)

Restated, spp )1( 

Thus, sequential time would be p times the parallel execution time 

minus (p-1) times the sequential portion of execution time.



Gustafson-Barsis’s Law

 Begin with parallel execution time and estimate 
the time spent in sequential portion.

 Predicts scaled speedup (Sp -  - same as T1)

 Estimate sequential execution time to solve same 
problem (s)

 Assumes that s remains fixed irrespective of how 
large is p - thus overestimates speedup.

 Problem size (s + p*(1-s)) is an increasing function 
of p



Example 1

 An application running on 10 processors 

spends 3% of its time in serial code. What is 

the scaled speedup of the application?

73.927.010)03.0)(101(10 

Execution on 1 CPU takes 10 times as long…

…except 9 do not have to execute serial code



Example 2

 What is the maximum fraction of a 

program’s parallel execution time that can 

be spent in serial code if it is to achieve a 

scaled speedup of 7 on 8 processors?

14.0)81(87  ss



Pop Quiz

 A parallel program executing on 32 

processors spends 5% of its time in 

sequential code. What is the scaled speedup 

of this program?



The Karp-Flatt Metric

 Amdahl’s Law and Gustafson-Barsis’ Law 

ignore (n,p)

 They can overestimate speedup or scaled 

speedup

 Karp and Flatt proposed another metric



Experimentally Determined 

Serial Fraction
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Experimentally Determined 

Serial Fraction

 Takes into account parallel overhead

 Detects other sources of overhead or 

inefficiency ignored in speedup model

Process startup time

Process synchronization time

 Imbalanced workload

Architectural overhead



Example 1

p 2 3 4 5 6 7

1.8 2.5 3.1 3.6 4.0 4.4

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Since e is constant, large serial fraction is the primary reason.



Example 2

p 2 3 4 5 6 7

1.9 2.6 3.2 3.7 4.1 4.5

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Since e is steadily increasing, overhead is the primary reason.



Isoefficiency Metric

 Parallel system: parallel program executing 
on a parallel computer

 Scalability of a parallel system: measure of 
its ability to increase performance as 
number of processors increases

 A scalable system maintains efficiency as 
processors are added

 Isoefficiency: way to measure scalability



Isoefficiency Derivation Steps

 Begin with speedup formula

 Compute total amount of overhead

 Assume efficiency remains constant

 Determine relation between sequential 

execution time and overhead



Deriving Isoefficiency Relation
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Substitute overhead into speedup equation
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Substitute T(n,1) = (n) + (n). Assume efficiency is constant. 

Hence, T0/T1 should be a constant fraction.

),()1,( 0 pnCTnT  Isoefficiency Relation



Scalability Function

 Suppose isoefficiency relation is n  f(p)

 Let M(n) denote memory required for 

problem of size n

 M(f(p))/p shows how memory usage per 

processor must increase to maintain same 

efficiency

 We call M(f(p))/p the scalability function



Meaning of Scalability Function

 To maintain efficiency when increasing p, we 

must increase n

 Maximum problem size limited by available 

memory, which is linear in p

 Scalability function shows how memory usage per 

processor must grow to maintain efficiency

 Scalability function a constant means parallel 

system is perfectly scalable



Interpreting Scalability Function
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Example 1: Reduction

 Sequential algorithm complexity

T(n,1) = (n)

 Parallel algorithm

Computational complexity = (n/p)

Communication complexity = (log p)

 Parallel overhead

T0(n,p) = (p log p)



Reduction (continued)

 Isoefficiency relation: n  C p log p

 We ask: To maintain same level of 
efficiency, how must n increase when p
increases?

 M(n) = n

 The system has good scalability

pCppCpppCpM log/log/)log( 



Example 2: Floyd’s Algorithm

 Sequential time complexity: (n3)

 Parallel computation time: (n3/p)

 Parallel communication time: (n2log p)

 Parallel overhead: T0(n,p) = (pn2log p)



Floyd’s Algorithm (continued)

 Isoefficiency relation

n3 C(p n3 log p)  n  C p log p

 M(n) = n2

 The parallel system has poor scalability

ppCpppCppCpM 22222 log/log/)log( 



Example 3: Finite Difference

 Sequential time complexity per iteration: 

(n2)

 Parallel communication complexity per 

iteration: (n/p)

 Parallel overhead: (n p)



Finite Difference (continued)

 Isoefficiency relation

n2 Cnp  n  C p

 M(n) = n2

 This algorithm is perfectly scalable

22 //)( CppCppCM 



Summary (1/3)

 Performance terms

Speedup

Efficiency

 Model of speedup

Serial component

Parallel component

Communication component



Summary (2/3)

 What prevents linear speedup?

Serial operations

Communication operations

Process start-up

 Imbalanced workloads

Architectural limitations



Summary (3/3)

 Analyzing parallel performance

Amdahl’s Law

Gustafson-Barsis’ Law

Karp-Flatt metric

 Isoefficiency metric


