
Parallel Programming
with MPI and OpenMP

Michael J. Quinn

Chapter 7

Performance Analysis

Learning Objectives

 Predict performance of parallel programs

 Understand barriers to higher performance

Outline

 General speedup formula

 Amdahl’s Law

 Gustafson-Barsis’ Law

 Karp-Flatt metric

 Isoefficiency metric

Speedup Formula

timeexecution Parallel

timeexecution Sequential
 Speedup

Execution Time Components

 Inherently sequential computations: (n)

sigma

 Potentially parallel computations: (n)

phi

 Communication operations: (n,p)

kappa

Speedup Expression

),(/)()(

)()(
),(

pnpnn

nn
pn

(Speedup: si)

(n)/p

(n,p)

(n)/p + (n,p)

Speedup Plot

“elbowing out”

Efficiency

used Processors

Speedup
 Efficiency

timeexecution Parallel used Processors

timeexecution Sequential
 Efficiency

Processors

Speedup
Efficiency

timeexecution ParallelProcessors

timeexecution Sequential
Efficiency

´

Efficiency is a fraction:

0 (n,p) 1 (Epsilon)

),()()(

)()(
),(

pnpnnp

nn
pn

All terms > 0 (n,p) > 0

Denominator > numerator (n,p) < 1

Amdahl’s Law

pnn

nn

pnpnn

nn
pn

/)()(

)()(

),(/)()(

)()(
),(

Let f = (n)/((n) + (n)); i.e., f is the

fraction of the code which is inherently sequential

pff /)1(

1

Example 1

 95% of a program’s execution time occurs

inside a loop that can be executed in

parallel. What is the maximum speedup we

should expect from a parallel version of the

program executing on 8 CPUs?

9.5
8/)05.01(05.0

1

Example 2

 20% of a program’s execution time is spent

within inherently sequential code. What is

the limit to the speedup achievable by a

parallel version of the program?

5
2.0

1

/)2.01(2.0

1
lim

 pp

Pop Quiz

 An oceanographer gives you a serial
program and asks you how much faster it
might run on 8 processors. You can only
find one function amenable to a parallel
solution. Benchmarking on a single
processor reveals 80% of the execution time
is spent inside this function. What is the
best speedup a parallel version is likely to
achieve on 8 processors?

Pop Quiz

 A computer animation program generates a

feature movie frame-by-frame. Each frame

can be generated independently and is

output to its own file. If it takes 99 seconds

to render a frame and 1 second to output it,

how much speedup can be achieved by

rendering the movie on 100 processors?

Limitations of Amdahl’s Law

 Ignores (n,p) - overestimates speedup

 Assumes f constant, so underestimates

speedup achievable

Amdahl Effect

 Typically (n) and (n,p) have lower

complexity than (n)/p

 As n increases, (n)/p dominates (n) &

(n,p)

 As n increases, speedup increases

 As n increases, sequential fraction f

decreases.

Illustration of Amdahl Effect

n = 100

n = 1,000

n = 10,000
Speedup

Processors

Review of Amdahl’s Law

 Treats problem size as a constant

 Shows how execution time decreases as

number of processors increases

Another Perspective

 We often use faster computers to solve

larger problem instances

 Let’s treat time as a constant and allow

problem size to increase with number of

processors

Gustafson-Barsis’s Law

pnn

nn
pn

/)()(

)()(
),(

Let Tp = (n)+(n)/p = 1 unit

Let s be the fraction of time that a parallel program

spends executing the serial portion of the code.

s = (n)/((n)+(n)/p)

Then,

 = T1/Tp = T1 <= s + p*(1-s) (the scaled speedup)

spp)1(

Thus, sequential time would be p times the parallelized portion

of the code plus the time for the sequential portion.

Gustafson-Barsis’s Law

 <= s + p*(1-s) (the scaled speedup)

Restated, spp)1(

Thus, sequential time would be p times the parallel execution time

minus (p-1) times the sequential portion of execution time.

Gustafson-Barsis’s Law

 Begin with parallel execution time and estimate
the time spent in sequential portion.

 Predicts scaled speedup (Sp - - same as T1)

 Estimate sequential execution time to solve same
problem (s)

 Assumes that s remains fixed irrespective of how
large is p - thus overestimates speedup.

 Problem size (s + p*(1-s)) is an increasing function
of p

Example 1

 An application running on 10 processors

spends 3% of its time in serial code. What is

the scaled speedup of the application?

73.927.010)03.0)(101(10

Execution on 1 CPU takes 10 times as long…

…except 9 do not have to execute serial code

Example 2

 What is the maximum fraction of a

program’s parallel execution time that can

be spent in serial code if it is to achieve a

scaled speedup of 7 on 8 processors?

14.0)81(87 ss

Pop Quiz

 A parallel program executing on 32

processors spends 5% of its time in

sequential code. What is the scaled speedup

of this program?

The Karp-Flatt Metric

 Amdahl’s Law and Gustafson-Barsis’ Law

ignore (n,p)

 They can overestimate speedup or scaled

speedup

 Karp and Flatt proposed another metric

Experimentally Determined

Serial Fraction

)()(

),()(

nn

pnn
e

Inherently serial component

of parallel computation +

processor communication and

synchronization overhead

Single processor execution time

p

p
e

/11

/1/1

Experimentally Determined

Serial Fraction

 Takes into account parallel overhead

 Detects other sources of overhead or

inefficiency ignored in speedup model

Process startup time

Process synchronization time

 Imbalanced workload

Architectural overhead

Example 1

p 2 3 4 5 6 7

1.8 2.5 3.1 3.6 4.0 4.4

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Since e is constant, large serial fraction is the primary reason.

Example 2

p 2 3 4 5 6 7

1.9 2.6 3.2 3.7 4.1 4.5

8

4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Since e is steadily increasing, overhead is the primary reason.

Isoefficiency Metric

 Parallel system: parallel program executing
on a parallel computer

 Scalability of a parallel system: measure of
its ability to increase performance as
number of processors increases

 A scalable system maintains efficiency as
processors are added

 Isoefficiency: way to measure scalability

Isoefficiency Derivation Steps

 Begin with speedup formula

 Compute total amount of overhead

 Assume efficiency remains constant

 Determine relation between sequential

execution time and overhead

Deriving Isoefficiency Relation

),()()1(),(pnpnppnTo

Determine overhead

Substitute overhead into speedup equation

),()()(

))()((

0
),(

pnTnn

nnp
pn

Substitute T(n,1) = (n) + (n). Assume efficiency is constant.

Hence, T0/T1 should be a constant fraction.

),()1,(0 pnCTnT Isoefficiency Relation

Scalability Function

 Suppose isoefficiency relation is n f(p)

 Let M(n) denote memory required for

problem of size n

 M(f(p))/p shows how memory usage per

processor must increase to maintain same

efficiency

 We call M(f(p))/p the scalability function

Meaning of Scalability Function

 To maintain efficiency when increasing p, we

must increase n

 Maximum problem size limited by available

memory, which is linear in p

 Scalability function shows how memory usage per

processor must grow to maintain efficiency

 Scalability function a constant means parallel

system is perfectly scalable

Interpreting Scalability Function

Number of processors

M
em

o
ry

 n
ee

d
ed

 p
er

 p
ro

ce
ss

o
r Cplogp

Cp

Clogp

C

Memory Size

Can maintain

efficiency

Cannot maintain

efficiency

Example 1: Reduction

 Sequential algorithm complexity

T(n,1) = (n)

 Parallel algorithm

Computational complexity = (n/p)

Communication complexity = (log p)

 Parallel overhead

T0(n,p) = (p log p)

Reduction (continued)

 Isoefficiency relation: n C p log p

 We ask: To maintain same level of
efficiency, how must n increase when p
increases?

 M(n) = n

 The system has good scalability

pCppCpppCpM log/log/)log(

Example 2: Floyd’s Algorithm

 Sequential time complexity: (n3)

 Parallel computation time: (n3/p)

 Parallel communication time: (n2log p)

 Parallel overhead: T0(n,p) = (pn2log p)

Floyd’s Algorithm (continued)

 Isoefficiency relation

n3 C(p n3 log p) n C p log p

 M(n) = n2

 The parallel system has poor scalability

ppCpppCppCpM 22222 log/log/)log(

Example 3: Finite Difference

 Sequential time complexity per iteration:

(n2)

 Parallel communication complexity per

iteration: (n/p)

 Parallel overhead: (n p)

Finite Difference (continued)

 Isoefficiency relation

n2 Cnp n C p

 M(n) = n2

 This algorithm is perfectly scalable

22 //)(CppCppCM

Summary (1/3)

 Performance terms

Speedup

Efficiency

 Model of speedup

Serial component

Parallel component

Communication component

Summary (2/3)

 What prevents linear speedup?

Serial operations

Communication operations

Process start-up

 Imbalanced workloads

Architectural limitations

Summary (3/3)

 Analyzing parallel performance

Amdahl’s Law

Gustafson-Barsis’ Law

Karp-Flatt metric

 Isoefficiency metric

