
  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming
in C with MPI and OpenMP

Michael J. QuinnMichael J. Quinn



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 9

Document ClassificationDocument Classification



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter Objectives

 Complete introduction of MPI functionsComplete introduction of MPI functions
 Show how to implement manager-worker Show how to implement manager-worker 

programsprograms



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline

 Introduce problemIntroduce problem
 Parallel algorithm designParallel algorithm design
 Creating communicatorsCreating communicators
 Non-blocking communicationsNon-blocking communications
 ImplementationImplementation
 PipeliningPipelining



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Document Classification 
Problem
 Search directories, subdirectories for Search directories, subdirectories for 

documents (look for .html, .txt, .tex, etc.)documents (look for .html, .txt, .tex, etc.)
 Using a dictionary of key words, create a Using a dictionary of key words, create a 

profile vector for each documentprofile vector for each document
 Store profile vectorsStore profile vectors



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Document Classification 
Problem



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Dependence Graph (1)



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Partitioning and Communication

 Most time spent reading documents and Most time spent reading documents and 
generating profile vectorsgenerating profile vectors

 Create two primitive tasks for each Create two primitive tasks for each 
documentdocument



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Dependence Graph (2)



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration and Mapping

 Number of tasks not known at compile timeNumber of tasks not known at compile time
 Tasks do not communicate with each otherTasks do not communicate with each other
 Time needed to perform tasks varies widelyTime needed to perform tasks varies widely
 Strategy: map tasks to processes at run timeStrategy: map tasks to processes at run time



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Manager/worker-style Algorithm

Can also be viewed as domain partitioning
with run-time allocation of data to tasks



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Manager/Worker vs. SPMD

 SPMD (single program multiple data)SPMD (single program multiple data)
 Every process executes same functionsEvery process executes same functions
 Our prior programs fit this moldOur prior programs fit this mold

 Manager/workerManager/worker
 Manager process has different responsibilities Manager process has different responsibilities 

than worker processesthan worker processes
 An MPI manager/worker program has an early An MPI manager/worker program has an early 

control flow split (manager process one way, control flow split (manager process one way, 
worker processes the other way)worker processes the other way)



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Roles of Manager and Workers



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Manager Pseudocode
Identify documents
Receive dictionary size from worker 0
Allocate matrix to store document vectors
repeat

Receive message from worker
if message contains document vector

Store document vector
endif
if documents remain then Send worker file 

name
else Send worker termination message
endif

until all workers terminated
Write document vectors to file



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Worker Pseudocode
Send first request for work to manager
if worker 0 then

Read dictionary from file
endif
Broadcast dictionary among workers
Build hash table from dictionary
if worker 0 then

Send dictionary size to manager
endif
repeat

Receive file name from manager
if file name is NULL then terminate endif
Read document, generate document vector
Send document vector to manager

forever



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Task/Channel Graph



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_Abort

 A “quick and dirty” way for one process to A “quick and dirty” way for one process to 
terminate all processes in a specified terminate all processes in a specified 
communicatorcommunicator

 Example use: If manager cannot allocate Example use: If manager cannot allocate 
memory needed to store document profile memory needed to store document profile 
vectorsvectors



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Header for MPI_Abort

int MPI_Abort (

   MPI_Comm comm,  /* Communicator */

   int error_code) /* Value returned to
                   calling environment */



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Creating a Workers-only 
Communicator

 Dictionary is broadcast among workersDictionary is broadcast among workers
 To support workers-only broadcast, need To support workers-only broadcast, need 

workers-only communicatorworkers-only communicator
 Can use MPI_Comm_splitCan use MPI_Comm_split
 Manager passes MPI_UNDEFINED as the Manager passes MPI_UNDEFINED as the 

value of split_key, meaning it will not be value of split_key, meaning it will not be 
part of any new communicatorpart of any new communicator



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Workers-only Communicator
int      id;
MPI_Comm worker_comm;

...

if (!id) /* Manager */
   MPI_Comm_split (MPI_COMM_WORLD,
      MPI_UNDEFINED, id, &worker_comm);

else /* Worker */
   MPI_Comm_split (MPI_COMM_WORLD, 0,
      id, &worker_comm);



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Nonblocking Send / Receive

 MPI_Isend, MPI_Irecv initiate operationMPI_Isend, MPI_Irecv initiate operation
 MPI_Wait blocks until operation completeMPI_Wait blocks until operation complete
 Calls can be made earlyCalls can be made early

 MPI_Isend as soon as value(s) assignedMPI_Isend as soon as value(s) assigned
 MPI_Irecv as soon as buffer availableMPI_Irecv as soon as buffer available

 Can eliminate a message copying stepCan eliminate a message copying step
 Allows communication / computation overlap Allows communication / computation overlap 



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Irecv
int MPI_Irecv (
      void         *buffer,
      int           cnt,
      MPI_Datatype  dtype,
      int           src,
      int           tag,
      MPI_Comm      comm,
      MPI_Request  *handle
)

Pointer to object that identifies
communication operation



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Wait

int MPI_Wait (

      MPI_Request *handle,

      MPI_Status *status

)



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Isend
int MPI_Isend (
      void         *buffer,
      int           cnt,
      MPI_Datatype  dtype,
      int           dest,
      int           tag,
      MPI_Comm      comm,
      MPI_Request  *handle
)

Pointer to object that identifies
communication operation



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Receiving Path Name

 Worker does not know length of longest Worker does not know length of longest 
path name it will receivepath name it will receive

 AlternativesAlternatives
 Allocate huge bufferAllocate huge buffer
 Check length of incoming message, then Check length of incoming message, then 

allocate bufferallocate buffer
 We’ll take the second alternativeWe’ll take the second alternative



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Probe
int MPI_Probe (

      int         src,

      int         tag,

      MPI_Comm    comm,

      MPI_Status *status
)

Blocks until message is available to be received



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Get_count
int MPI_Get_count (
      
     MPI_Status *status,

     MPI_Datatype dtype,

     int *cnt
)



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Enhancements

 Middle ground between pre-allocation and Middle ground between pre-allocation and 
one-at-a-time allocationone-at-a-time allocation

 Pipelining of document processingPipelining of document processing



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Allocation Alternatives

Documents Allocated per Request
n/p

Load imbalance

1

Excessive
communication
overhead

Time



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pipelining



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Time Savings through Pipelining



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pipelined Manager Pseudocode
a ←  0 {assigned jobs}
j ← 0 {available jobs}
w ← 0 {workers waiting for assignment}
repeat

if (j > 0) and (w > 0) then
assign job to worker
j ← j – 1; w ← w – 1; a ← a + 1

elseif (j > 0) then
handle an incoming message from workers
increment w

else
get another job
increment j

endif
until (a = n) and (w = p)



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Testsome
int MPI_Testsome (
      
     int in_cnt,  /* IN - Number of
        nonblocking receives to check */

MPI_Request *handlearray,  /* IN -
        Handles of pending receives */

int *out_cnt, /* OUT - Number of 
        completed communications */ 

int *index_array, /* OUT - Indices of
        completed communications */

MPI_Status *status_array) /* OUT -
        Status records for completed comms */



  

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary

 Manager/worker paradigmManager/worker paradigm
 Dynamic number of tasksDynamic number of tasks
 Variable task lengthsVariable task lengths
 No communications between tasksNo communications between tasks

 New tools for “kit”New tools for “kit”
 Create manager/worker programCreate manager/worker program
 Create workers-only communicatorCreate workers-only communicator
 Non-blocking send/receiveNon-blocking send/receive
 Testing for completed communicationsTesting for completed communications


	Parallel Programming in C with MPI and OpenMP
	Chapter 9
	Chapter Objectives
	Outline
	Document Classification Problem
	Slide 6
	Data Dependence Graph (1)
	Partitioning and Communication
	Data Dependence Graph (2)
	Agglomeration and Mapping
	Manager/worker-style Algorithm
	Manager/Worker vs. SPMD
	Roles of Manager and Workers
	Manager Pseudocode
	Worker Pseudocode
	Task/Channel Graph
	MPI_Abort
	Header for MPI_Abort
	Creating a Workers-only Communicator
	Workers-only Communicator
	Nonblocking Send / Receive
	Function MPI_Irecv
	Function MPI_Wait
	Function MPI_Isend
	Receiving Path Name
	Function MPI_Probe
	Function MPI_Get_count
	Enhancements
	Allocation Alternatives
	Pipelining
	Time Savings through Pipelining
	Pipelined Manager Pseudocode
	Function MPI_Testsome
	Summary

