# Parallel Programming in C with MPI and OpenMP

Michael J. Quinn



# Chapter 10

Monte Carlo Methods

# Chapter Objectives

- Introduce Monte Carlo methods
- Introduce techniques for parallel random number generation

### Outline

- Monte Carlo method
- Sequential random number generators
- Parallel random number generators
- Generating non-uniform random numbers
- Monte Carlo case studies

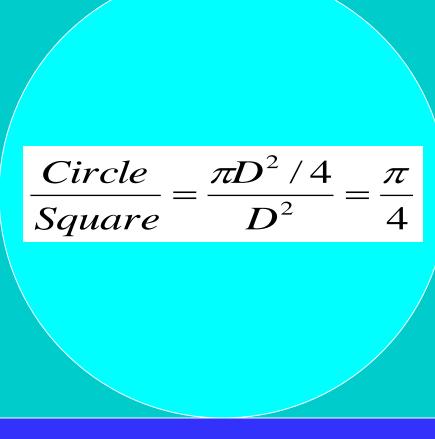
### Monte Carlo Method

- Solve a problem using statistical sampling
- Name comes from Monaco's gambling resort city
- First important use in development of atomic bomb during World War II

# Applications of Monte Carlo Method

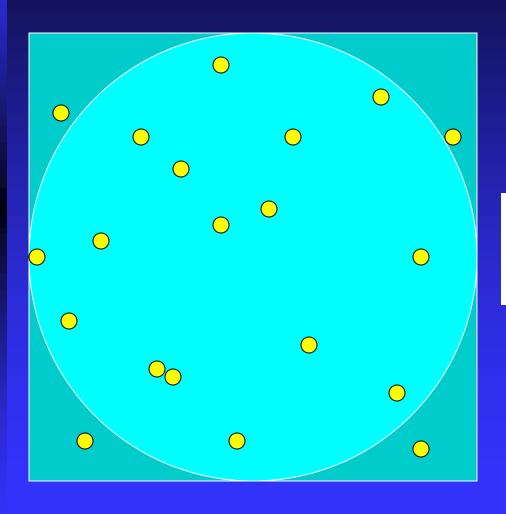
- Evaluating integrals of arbitrary functions of 6+ dimensions
- Predicting future values of stocks
- Solving partial differential equations
- Sharpening satellite images
- Modeling cell populations
- Finding approximate solutions to NP-hard problems

## Example of Monte Carlo Method



D

# Example of Monte Carlo Method



$$\frac{16}{20} \approx \frac{\pi}{4} \Longrightarrow \pi \approx 3.2$$

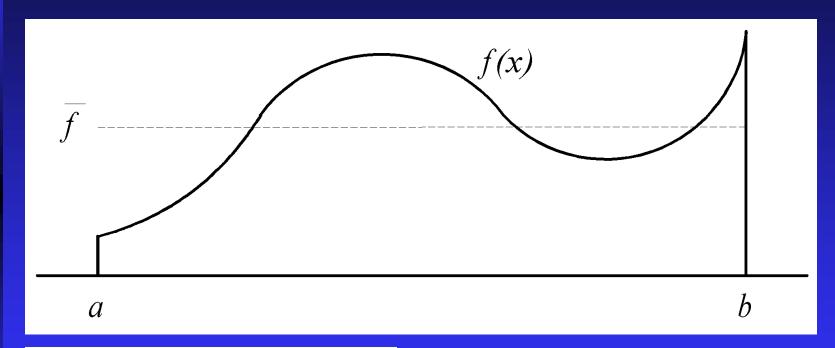
#### Absolute Error

- Absolute error is a way to measure the quality of an estimate
- The smaller the error, the better the estimate
- a: actual value
- e: estimated value
- Absolute error = |e-a|/a

## Increasing Sample Size Reduces Error

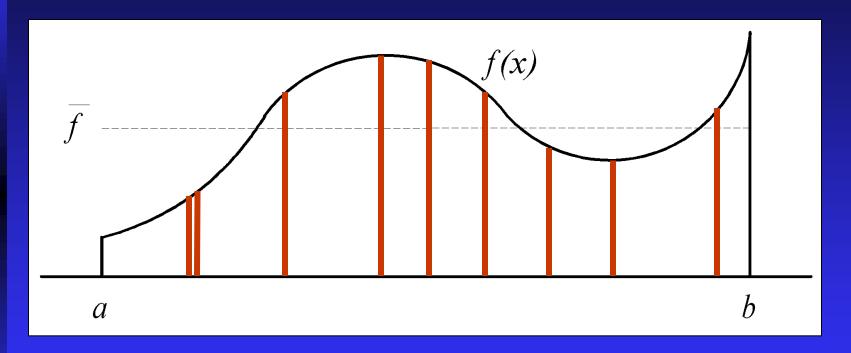
| n             | Estimate | Error   | $1/(2n^{1/2})$ |
|---------------|----------|---------|----------------|
| 10            | 2.40000  | 0.23606 | 0.15811        |
| 100           | 3.36000  | 0.06952 | 0.05000        |
| 1,000         | 3.14400  | 0.00077 | 0.01581        |
| 10,000        | 3.13920  | 0.00076 | 0.00500        |
| 100,000       | 3.14132  | 0.00009 | 0.00158        |
| 1,000,000     | 3.14006  | 0.00049 | 0.00050        |
| 10,000,000    | 3.14136  | 0.00007 | 0.00016        |
| 100,000,000   | 3.14154  | 0.00002 | 0.00005        |
| 1,000,000,000 | 3.14155  | 0.00001 | 0.00002        |

## Mean Value Theorem



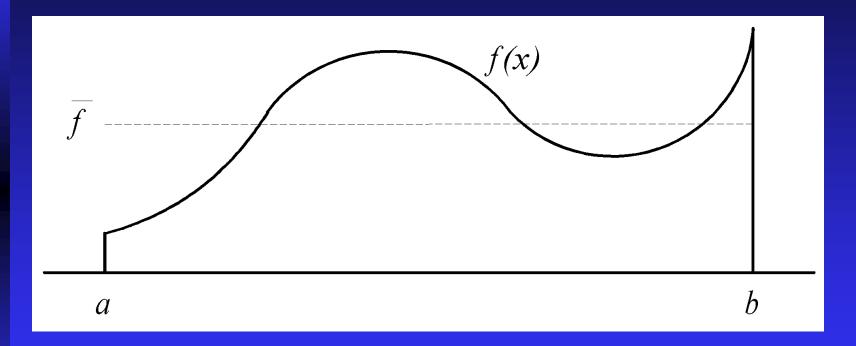
$$\int_{a}^{b} f(x)dx = (b-a) \bar{f}$$

# Estimating Mean Value



The expected value of  $(1/n)(f(x_0) + ... + f(x_{n-1}))$  is  $\overline{f}$ 

## Why Monte Carlo Works



$$\int_{a}^{b} f(x)dx = (b-a) \overline{f} \approx (b-a) \frac{1}{n} \sum_{i=0}^{n-1} f(x_i)$$

# Why Monte Carlo is Effective

- Error in Monte Carlo estimate decreases by the factor  $1/n^{1/2}$
- Rate of convergence independent of integrand's dimension
- Deterministic numerical integration methods do not share this property
- Hence Monte Carlo superior when integrand has 6 or more dimensions

#### Parallelism in Monte Carlo Methods

- Monte Carlo methods often amenable to parallelism
- Find an estimate about p times fasterOR
- Reduce error of estimate by  $p^{1/2}$

#### Random versus Pseudo-random

- Virtually all computers have "random number" generators
- Their operation is deterministic
- Sequences are predictable
- More accurately called "pseudo-random number" generators
- In this chapter "random" is shorthand for "pseudorandom"
- "RNG" means "random number generator"

# Properties of an Ideal RNG

- Uniformly distributed
- Uncorrelated
- Never cycles
- Satisfies any statistical test for randomness
- Reproducible
- Machine-independent
- Changing "seed" value changes sequence
- Easily split into independent subsequences
- Fast
- Limited memory requirements

#### No RNG Is Ideal

- Finite precision arithmetic ⇒ finite number of states ⇒ cycles
  - ◆ Period = length of cycle
  - ◆ If period > number of values needed, effectively acyclic
- Reproducible ⇒ correlations
- Often speed versus quality trade-offs

# Linear Congruential RNGs

$$X_i = (a \times X_{i-1} + c) \operatorname{mod} M$$

$$Modulus$$

$$Multiplier$$

Sequence depends on choice of seed,  $X_0$ 

## Period of Linear Congruential RNG

- Maximum period is M
- For 32-bit integers maximum period is 2<sup>32</sup>, or about 4 billion
- This is too small for modern computers
- Use a generator with at least 48 bits of precision

## Producing Floating-Point Numbers

- $\blacksquare X_i$ , a, c, and M are all integers
- $\blacksquare X_i$ s range in value from 0 to M-1
- To produce floating-point numbers in range [0, 1), divide  $X_i$  by M

## Defects of Linear Congruential RNGs

- Least significant bits correlated
  - $\bullet$  Especially when M is a power of 2
- *k*-tuples of random numbers form a lattice
  - $\bullet$  Especially pronounced when k is large

# Lagged Fibonacci RNGs

$$X_{i} = X_{i-p} * X_{i-q}$$

- ightharpoonup p and q are lags, p > q
- \* is any binary arithmetic operation
  - Addition modulo *M*
  - Subtraction modulo *M*
  - Multiplication modulo *M*
  - Bitwise exclusive or

### Properties of Lagged Fibonacci RNGs

- Require p seed values
- Careful selection of seed values, p, and q can result in very long periods and good randomness
- $\blacksquare$  For example, suppose M has b bits
- Maximum period for additive lagged Fibonacci RNG is (2<sup>p</sup> -1)2<sup>b-1</sup>

#### Ideal Parallel RNGs

- All properties of sequential RNGs
- No correlations among numbers in different sequences
- Scalability
- Locality

# Parallel RNG Designs

- Manager-worker
- Leapfrog
- Sequence splitting
- Independent sequences

# Manager-Worker Parallel RNG

- Manager process generates random numbers
- Worker processes consume them
- If algorithm is synchronous, may achieve goal of consistency
- Not scalable
- Does not exhibit locality

# Leapfrog Method



Process with rank 1 of 4 processes

# Properties of Leapfrog Method

- Easy modify linear congruential RNG to support jumping by p
- Can allow parallel program to generate same tuples as sequential program
- Does not support dynamic creation of new random number streams

# Sequence Splitting



Process with rank 1 of 4 processes

# Properties of Sequence Splitting

- Forces each process to move ahead to its starting point
- Does not support goal of reproducibility
- May run into long-range correlation problems
- Can be modified to support dynamic creation of new sequences

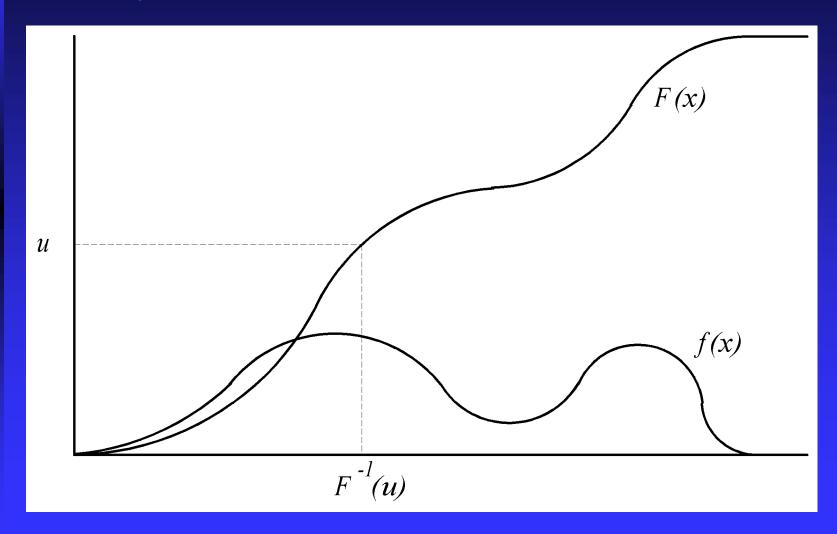
# Independent Sequences

- Run sequential RNG on each process
- Start each with different seed(s) or other parameters
- Example: linear congruential RNGs with different additive constants
- Works well with lagged Fibonacci RNGs
- Supports goals of locality and scalability

## Other Distributions

- Analytical transformations
- Box-Muller Transformation
- Rejection method

# Analytical Transformation



## **Exponential Distribution**

1.0

$$F^{-1}(u) = -m \ln u$$

$$F(x) = 1 - e^{-x/m}$$

$$f(x) = \frac{1}{m}e^{-x/m}$$

# Example 1:

- Produce four samples from an exponential distribution with mean 3
- Uniform sample: 0.540, 0.619, 0.452, 0.095
- Take natural log of each value and multiply by -3
- Exponential sample: 1.850, 1.440, 2.317,7.072

#### Example 2:

- Simulation advances in time steps of 1 second
- Probability of an event happening is from an exponential distribution with mean 5 seconds
- What is probability that event will happen in next second?
- **1/5**
- Use uniform random number to test for occurrence of event

#### **Box-Muller Transformation**

- Cannot invert cumulative distribution function to produce formula yielding random numbers from normal (gaussian) distribution
- Box-Muller transformation produces a pair of standard deviates  $g_1$  and  $g_2$  from a pair of normal deviates  $u_1$  and  $u_2$

#### **Box-Muller Transformation**

#### repeat

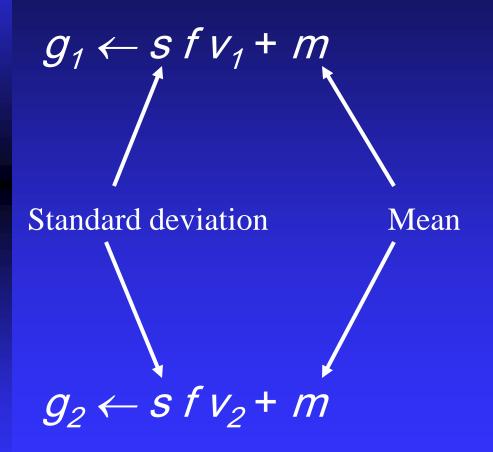
$$v_1 \leftarrow 2u_1 - 1$$
  
 $v_2 \leftarrow 2u_2 - 1$   
 $r \leftarrow v_1^2 + v_2^2$   
until  $r > 0$  and  $r < 1$   
 $f \leftarrow \text{sqrt} (-2 \ln r/r)$   
 $g_1 \leftarrow f v_1$   
 $g_2 \leftarrow f v_2$ 

#### Example

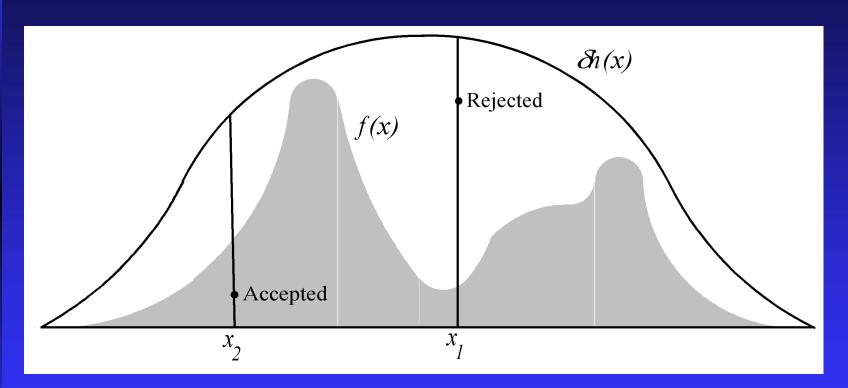
Produce four samples from a normal distribution with mean 0 and standard deviation 1

| $U_1$ | $U_2$ | $V_1$  | $V_2$  | r     | f     | $g_1$  | $g_2$  |
|-------|-------|--------|--------|-------|-------|--------|--------|
| 0.234 | 0.784 | -0.532 | 0.568  | 0.605 | 1.290 | -0.686 | 0.732  |
| 0.824 | 0.039 | 0.648  | -0.921 | 1.269 |       |        |        |
| 0.430 | 0.176 | -0.140 | -0.648 | 0.439 | 1.935 | -0.271 | -1.254 |

#### Different Mean, Std. Dev.



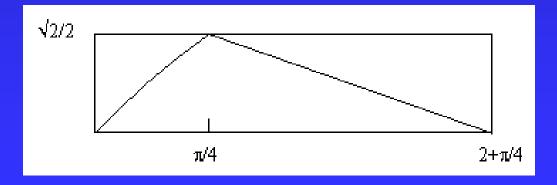
# Rejection Method



#### Example

Generate random variables from this probability density function

$$f(x) = \begin{cases} \sin x, & \text{if } 0 \le x \le \pi/4 \\ (-4x + \pi + 8)/(8\sqrt{2}), & \text{if } \pi/4 < x \le 2 + \pi/4 \\ 0, & \text{otherwise} \end{cases}$$



#### Example (cont.)

$$h(x) = \begin{cases} 1/(2+\pi/4), & \text{if } 0 \le x \le 2+\pi/4 \\ 0, & \text{otherwise} \end{cases}$$

$$\delta = (2 + \pi/4)/(\sqrt{2}/2)$$

$$\delta h(x) = \begin{cases} \sqrt{2}/2, & \text{if } 0 \le x \le 2 + \pi/4 \\ 0, & \text{otherwise} \end{cases}$$

So  $\delta h(x) \ge f(x)$  for all x

#### Example (cont.)

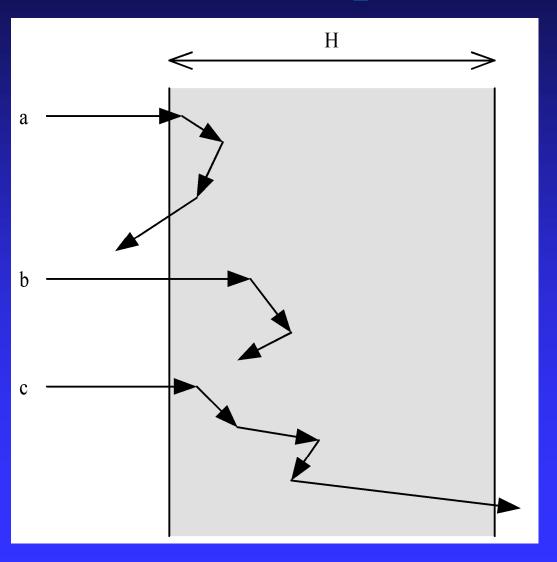
| $x_i$ | $u_i$ | $u_i \delta h(x_i)$ | $f(x_i)$ | Outcome |
|-------|-------|---------------------|----------|---------|
| 0.860 | 0.975 | 0.689               | 0.681    | Reject  |
| 1.518 | 0.357 | 0.252               | 0.448    | Accept  |
| 0.357 | 0.920 | 0.650               | 0.349    | Reject  |
| 1.306 | 0.272 | 0.192               | 0.523    | Accept  |

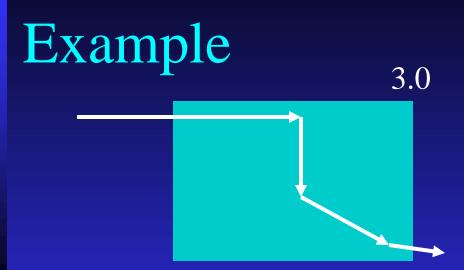
Two samples from f(x) are 1.518 and 1.306

# Case Studies (Topics Introduced)

- Neutron transport (Monte Carlo time)
- Temperature inside a 2-D plate (Random walk)
- Two-dimensional Ising model (Metropolis algorithm)
- Room assignment problem (Simulated annealing)
- Parking garage (Monte Carlo time)
- Traffic circle (Simulating queues)

# Neutron Transport

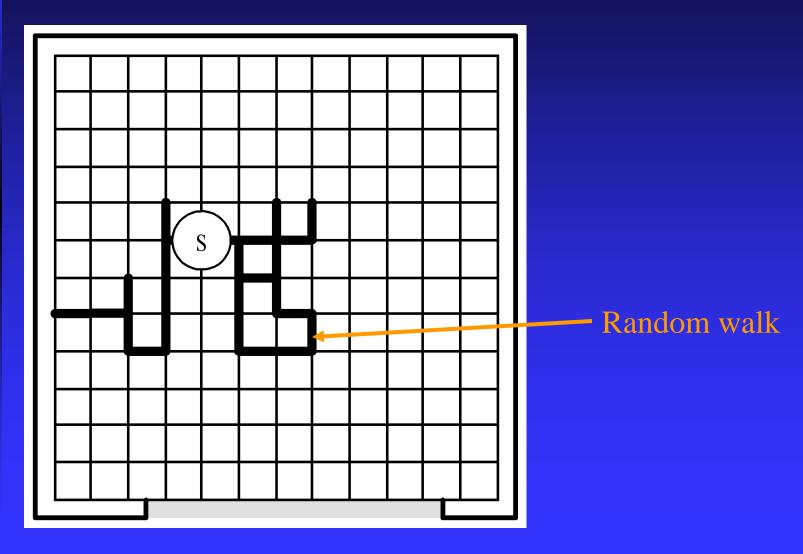




#### Monte Carlo Time

| D         | Angle | и     | L          | $L\cos D$ | Dist. | Absorb?   |
|-----------|-------|-------|------------|-----------|-------|-----------|
| $(0-\pi)$ |       | (0-1) | $(-\ln u)$ |           |       | (0-1)     |
| 0.00      | 0.0   | 0.20  | 1.59       | 1.59      | 1.59  | 0.41 (no) |
| 1.55      | 89.2  | 0.34  | 1.08       | 0.01      | 1.60  | 0.84 (no) |
| 0.42      | 24.0  | 0.27  | 1.31       | 1.20      | 2.80  | 0.57 (no) |
| 0.33      | 19.4  | 0.60  | 0.52       | 0.49      | 3.29  |           |

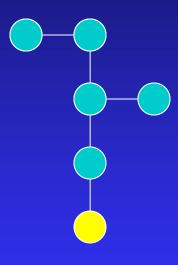
# Temperature Inside a 2-D Plate



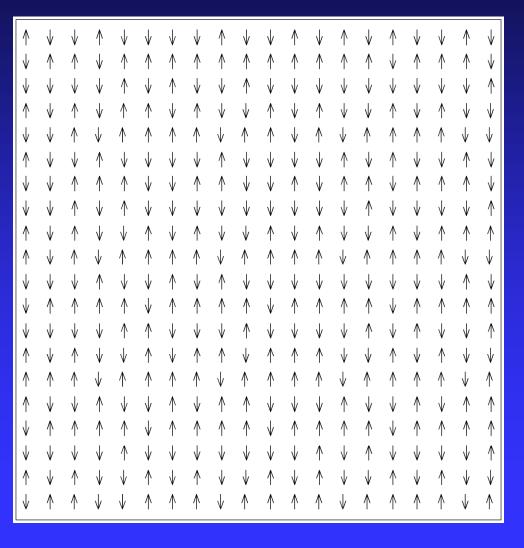
#### Example of Random Walk

$$0 \le u < 1 \Longrightarrow \lfloor 4u \rfloor \in \{0,1,2,3\}$$

2



# 2-D Ising Model



#### Metropolis Algorithm

- Use current random sample to generate next random sample
- Series of samples represents a random walk through the probability density function
- Short series of samples highly correlated
- Many samples can provide good coverage

#### Metropolis Algorithm Details

- Randomly select site to reverse spin
- If energy is lower, move to new state
- Otherwise, move with probability  $\rho = e^{-\Delta/kT}$
- Rejection causes current state to be recorded another time

#### Room Assignment Problem

|   | A | В | C | D | E | F |
|---|---|---|---|---|---|---|
| A | 0 | 3 | 5 | 9 | 1 | 6 |
| В | 3 | 0 | 2 | 6 | 4 | 5 |
| C | 5 | 2 | 0 | 8 | 9 | 2 |
| D | 9 | 6 | 8 | 0 | 3 | 4 |
| E | 1 | 4 | 9 | 3 | 0 | 5 |
| F | 6 | 5 | 2 | 4 | 5 | 0 |

"Dislikes" matrix

Pairing A-B, C-D, and E-F leads to total conflict value of 32.

#### Physical Annealing

- Heat a solid until it melts
- Cool slowly to allow material to reach state of minimum energy
- Produces strong, defect-free crystal with regular structure

#### Simulated Annealing

- Makes analogy between physical annealing and solving combinatorial optimization problem
- Solution to problem = state of material
- Value of objective function = energy associated with state
- Optimal solution = minimum energy state

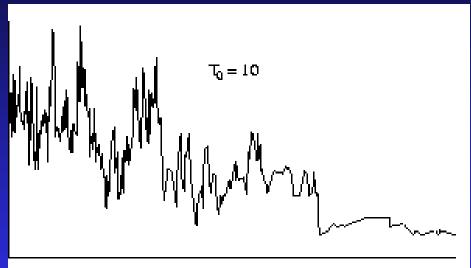
## How Simulated Annealing Works

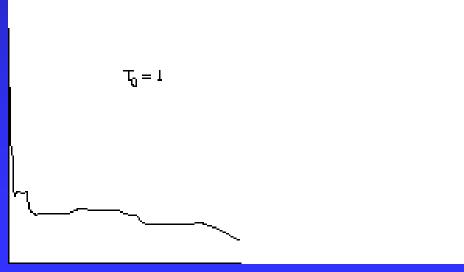
- Iterative algorithm, slowly lower *T*
- Randomly change solution to create alternate solution
- Compute Δ, the change in value of objective function
- If  $\Delta$  < 0, then jump to alternate solution
- Otherwise, jump to alternate solution with probability  $e^{-\Delta/T}$

# Performance of Simulated Annealing

- Rate of convergence depends on initial value of T and temperature change function
- Geometric temperature change functions typical; e.g.,  $T_{i+1} = 0.999 T_i$
- Not guaranteed to find optimal solution
- Same algorithm using different random number streams can converge on different solutions
- Opportunity for parallelism

#### Convergence





Starting with higher initial temperature leads to more iterations before convergence

#### Parking Garage

- Parking garage has S stalls
- Car arrivals fit Poisson distribution with mean *A*
- Stay in garage fits a normal distribution with mean M and standard deviation M/S

#### Implementation Idea

Times Spaces Are Available



**Current Time** 

64.2

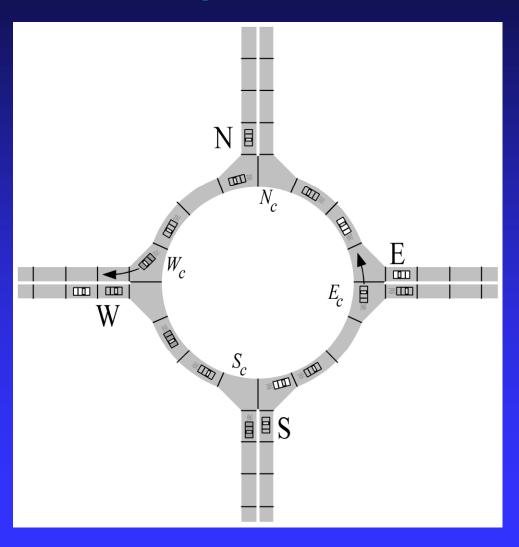
Car Count

15

Cars Rejected

2

#### Traffic Circle

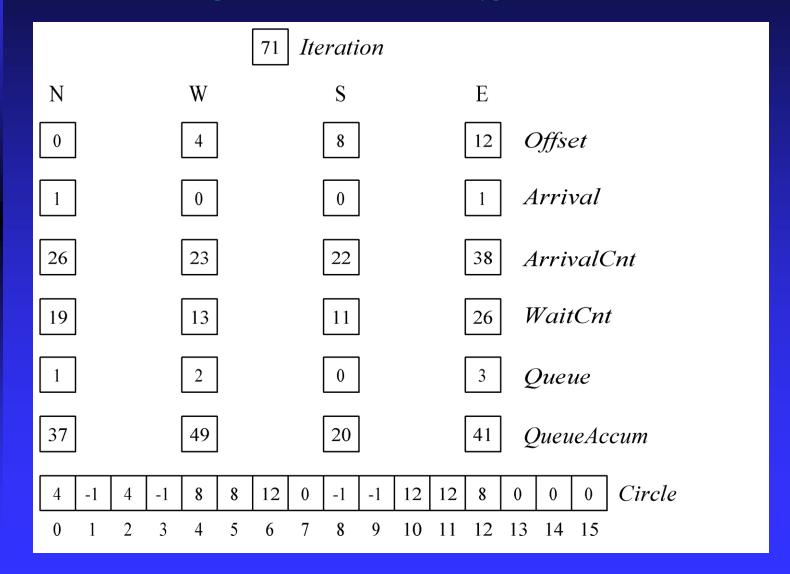


#### Traffic Circle Probabilities

|   | F    |
|---|------|
| N | 0.33 |
| E | 0.50 |
| S | 0.25 |
| W | 0.33 |

| D | N   | E   | S   | W   |
|---|-----|-----|-----|-----|
| N | 0.1 | 0.2 | 0.5 | 0.2 |
| E | 0.3 | 0.1 | 0.2 | 0.4 |
| S | 0.5 | 0.3 | 0.1 | 0.1 |
| W | 0.2 | 0.4 | 0.3 | 0.1 |

#### Traffic Circle Data Structures



## Summary (1/3)

- Applications of Monte Carlo methods
  - ◆ Numerical integration
  - **♦** Simulation
- Random number generators
  - ◆ Linear congruential
  - ◆ Lagged Fibonacci

## Summary (2/3)

- Parallel random number generators
  - Manager/worker
  - ◆ Leapfrog
  - Sequence splitting
  - Independent sequences
- Non-uniform distributions
  - Analytical transformations
  - Box-Muller transformation
  - Rejection method

## Summary (3/3)

- Concepts revealed in case studies
  - ◆ Monte Carlo time
  - ◆ Random walk
  - ◆ Metropolis algorithm
  - ◆ Simulated annealing
  - Modeling queues