
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

Parallel Programming 
in C with MPI and OpenMP 

Michael J. Quinn 



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

Chapter 10 

Monte Carlo Methods 



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

Chapter Objectives 

 Introduce Monte Carlo methods 

 Introduce techniques for parallel random 

number generation 
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Outline 

 Monte Carlo method 

 Sequential random number generators 

 Parallel random number generators 

 Generating non-uniform random numbers 

 Monte Carlo case studies 
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Monte Carlo Method 

 Solve a problem using statistical sampling 

 Name comes from Monaco’s gambling 

resort city 

 First important use in development of 

atomic bomb during World War II 
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Applications of Monte Carlo 

Method 

 Evaluating integrals of arbitrary functions of 6+ 
dimensions 

 Predicting future values of stocks 

 Solving partial differential equations 

 Sharpening satellite images 

 Modeling cell populations 

 Finding approximate solutions to NP-hard 
problems 
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Example of Monte Carlo Method 
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Example of Monte Carlo Method 
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Absolute Error 

 Absolute error is a way to measure the 

quality of an estimate 

 The smaller the error, the better the estimate 

 a: actual value 

 e: estimated value 

 Absolute error = |e-a|/a 
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Increasing Sample Size Reduces Error 

n Estimate Error 1/(2n1/2) 

10 2.40000 0.23606 0.15811 

100 3.36000 0.06952 0.05000 

1,000 3.14400 0.00077 0.01581 

10,000 3.13920 0.00076 0.00500 

100,000 3.14132 0.00009 0.00158 

1,000,000 3.14006 0.00049 0.00050 

10,000,000 3.14136 0.00007 0.00016 

100,000,000 3.14154 0.00002 0.00005 

1,000,000,000 3.14155 0.00001 0.00002 
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Mean Value Theorem 
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Estimating Mean Value 

The expected value of (1/n)(f(x0) + … + f(xn-1)) is f 
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Why Monte Carlo Works 
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Why Monte Carlo is Effective 

 Error in Monte Carlo estimate decreases by 
the factor 1/n1/2 

 Rate of convergence independent of 
integrand’s dimension 

 Deterministic numerical integration 
methods do not share this property 

 Hence Monte Carlo superior when 
integrand has 6 or more dimensions 
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Parallelism in Monte Carlo Methods 

 Monte Carlo methods often amenable to 

parallelism 

 Find an estimate about p times faster 

   OR 

 Reduce error of estimate by p1/2 
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Random versus Pseudo-random 

 Virtually all computers have “random number” 
generators 

 Their operation is deterministic 

 Sequences are predictable 

 More accurately called “pseudo-random number” 
generators 

 In this chapter “random” is shorthand for “pseudo-
random” 

 “RNG” means “random number generator” 
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Properties of an Ideal RNG 

 Uniformly distributed 

 Uncorrelated 

 Never cycles 

 Satisfies any statistical test for randomness 

 Reproducible 

 Machine-independent 

 Changing “seed” value changes sequence 

 Easily split into independent subsequences 

 Fast 

 Limited memory requirements 
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No RNG Is Ideal 

 Finite precision arithmetic  finite number 

of states  cycles 

Period = length of cycle 

 If period > number of values needed, 

effectively acyclic 

 Reproducible  correlations 

 Often speed versus quality trade-offs 
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Linear Congruential RNGs 

McXaX ii mod)( 1  

Multiplier 

Additive constant 

Modulus 

Sequence depends on choice of seed, X0 
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Period of Linear Congruential RNG 

 Maximum period is M 

 For 32-bit integers maximum period is 232, 

or about 4 billion 

 This is too small for modern computers 

 Use a generator with at least 48 bits of 

precision 



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

Producing Floating-Point Numbers 

 Xi, a, c, and M are all integers 

 Xis range in value from 0 to M-1 

 To produce floating-point numbers in range 

[0, 1), divide Xi by M 
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Defects of Linear Congruential RNGs 

 Least significant bits correlated 

Especially when M is a power of 2 

 k-tuples of random numbers form a lattice 

Especially pronounced when k is large 
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Lagged Fibonacci RNGs 

qipii XXX  

 p and q are lags, p > q 

 * is any binary arithmetic operation 

Addition modulo M 

Subtraction modulo M 

Multiplication modulo M 

Bitwise exclusive or 
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Properties of Lagged Fibonacci RNGs 

 Require p seed values 

 Careful selection of seed values, p, and q 

can result in very long periods and good 

randomness 

 For example, suppose M has b bits 

 Maximum period for additive lagged 

Fibonacci RNG is (2p -1)2b-1 
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Ideal Parallel RNGs 

 All properties of sequential RNGs 

 No correlations among numbers in different 

sequences 

 Scalability 

 Locality 
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Parallel RNG Designs 

 Manager-worker  

 Leapfrog 

 Sequence splitting 

 Independent sequences 
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Manager-Worker Parallel RNG 

 Manager process generates random 

numbers 

 Worker processes consume them 

 If algorithm is synchronous, may achieve 

goal of consistency 

 Not scalable 

 Does not exhibit locality 
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Leapfrog Method 

Process with rank 1 of 4 processes 
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Properties of Leapfrog Method 

 Easy modify linear congruential RNG to 

support jumping by p 

 Can allow parallel program to generate 

same tuples as sequential program 

 Does not support dynamic creation of new 

random number streams 
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Sequence Splitting 

Process with rank 1 of 4 processes 
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Properties of Sequence Splitting 

 Forces each process to move ahead to its 

starting point 

 Does not support goal of reproducibility 

 May run into long-range correlation 

problems 

 Can be modified to support dynamic 

creation of new sequences 
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Independent Sequences 

 Run sequential RNG on each process 

 Start each with different seed(s) or other 

parameters 

 Example: linear congruential RNGs with 

different additive constants 

 Works well with lagged Fibonacci RNGs 

 Supports goals of locality and scalability 
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Other Distributions 

 Analytical transformations 

 Box-Muller Transformation 

 Rejection method 
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Analytical Transformation 
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Exponential Distribution 
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Example 1: 

 Produce four samples from an exponential 

distribution with mean 3 

 Uniform sample: 0.540, 0.619, 0.452, 0.095 

 Take natural log of each value and multiply 

by -3 

 Exponential sample: 1.850, 1.440, 2.317, 

7.072 
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Example 2: 

 Simulation advances in time steps of 1 second 

 Probability of an event happening is from an 

exponential distribution with mean 5 seconds 

 What is probability that event will happen in next 

second? 

 1/5  

 Use uniform random number to test for occurrence 

of event 
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Box-Muller Transformation 

 Cannot invert cumulative distribution 

function to produce formula yielding 

random numbers from normal (gaussian) 

distribution 

 Box-Muller transformation produces a pair 

of standard deviates g1 and g2 from a pair of 

normal deviates u1 and u2 
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Box-Muller Transformation 

repeat 

 v1  2u1 - 1 

 v2  2u2 - 1 

 r  v1
2 + v2

2 

until r > 0 and r < 1 

f  sqrt (-2 ln r /r ) 
g1  f v1 

g2  f v2 
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Example 

 Produce four samples from a normal 

distribution with mean 0 and standard 

deviation 1 

u1 u2 v1 v2 r f g1 g2 

0.234 0.784 -0.532 0.568 0.605 1.290 -0.686 0.732 

0.824 0.039 0.648 -0.921 1.269 

0.430 0.176 -0.140 -0.648 0.439 1.935 -0.271 -1.254 
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Different Mean, Std. Dev. 

g1  s f v1 + m 
 
 
 
 
 
 
g2  s f v2 + m 

Standard deviation Mean 
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Rejection Method 
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Example 

 Generate random variables from this 

probability density function 















otherwise,0

4/2  /4 if),28/()84(

4/0if,sin

)( 



xx

xx

xf



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

Example (cont.) 
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So  h(x)  f(x) for all x 
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Example (cont.) 

xi ui uih(xi) f(xi) Outcome 

0.860 0.975 0.689 0.681 Reject 

1.518 0.357 0.252 0.448 Accept 

0.357 0.920 0.650 0.349 Reject 

1.306 0.272 0.192 0.523 Accept 

Two samples from f(x) are 1.518 and 1.306 
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Case Studies (Topics Introduced) 

 Neutron transport (Monte Carlo time) 

 Temperature inside a 2-D plate (Random walk) 

 Two-dimensional Ising model 

(Metropolis algorithm) 

 Room assignment problem (Simulated annealing) 

 Parking garage (Monte Carlo time) 

 Traffic circle (Simulating queues) 
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Neutron Transport 
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Example 

D 

(0-) 

Angle u 

(0-1) 

L 

(-ln u) 

LcosD Dist. Absorb? 

(0-1) 

0.00 0.0 0.20 1.59 1.59 1.59 0.41 (no) 

1.55 89.2 0.34 1.08 0.01 1.60 0.84 (no) 

0.42 24.0 0.27 1.31 1.20 2.80 0.57 (no) 

0.33 19.4 0.60 0.52 0.49 3.29 

Monte Carlo Time 

3.0 
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Temperature Inside a 2-D Plate 

Random walk 
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Example of Random Walk 

  }3,2,1,0{410  uu

1 3 1 2 1 3 2 2 
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2-D Ising Model 
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Metropolis Algorithm 

 Use current random sample to generate next 

random sample 

 Series of samples represents a random walk 

through the probability density function 

 Short series of samples highly correlated 

 Many samples can provide good coverage 
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Metropolis Algorithm Details 

 Randomly select site to reverse spin 

 If energy is lower, move to new state 

 Otherwise, move with probability  = e-/kT 

 Rejection causes current state to be 

recorded another time 
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Room Assignment Problem 

A B C D E F 

A 0 3 5 9 1 6 

B 3 0 2 6 4 5 

C 5 2 0 8 9 2 

D 9 6 8 0 3 4 

E 1 4 9 3 0 5 

F 6 5 2 4 5 0 

“Dislikes” 

   matrix 

Pairing A-B, C-D, and E-F leads to total 

conflict value of 32. 
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Physical Annealing 

 Heat a solid until it melts 

 Cool slowly to allow material to reach state 

of minimum energy 

 Produces strong, defect-free crystal with 

regular structure 
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Simulated Annealing 

 Makes analogy between physical annealing 

and solving combinatorial optimization 

problem 

 Solution to problem = state of material 

 Value of objective function = energy 

associated with state 

 Optimal solution = minimum energy state 



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

How Simulated Annealing Works 

 Iterative algorithm, slowly lower T 

 Randomly change solution to create 
alternate solution 

 Compute , the change in value of objective 
function 

 If  < 0, then jump to alternate solution 

 Otherwise, jump to alternate solution with 

probability e-/T 
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Performance of Simulated 

Annealing 

 Rate of convergence depends on initial value of T 

and temperature change function 

 Geometric temperature change functions typical; 

e.g., Ti+1 = 0.999 Ti 

 Not guaranteed to find optimal solution 

 Same algorithm using different random number 

streams can converge on different solutions 

 Opportunity for parallelism 
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Convergence 

Starting with higher 

initial temperature 

leads to more iterations 

before convergence 
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Parking Garage 

 Parking garage has S stalls 

 Car arrivals fit Poisson distribution with 

mean A 

 Stay in garage fits a normal distribution 

with mean M and standard deviation M/S 
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Implementation Idea 

101.2 142.1 70.3 91.7 223.1 

64.2 

Current Time 

Times Spaces Are Available 

15 

Car Count Cars Rejected 

2 
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Traffic Circle 
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Traffic Circle Probabilities 

F 

N 0.33 

E 0.50 

S 0.25 

W 0.33 

D N E S W 

N 0.1 0.2 0.5 0.2 

E 0.3 0.1 0.2 0.4 

S 0.5 0.3 0.1 0.1 

W 0.2 0.4 0.3 0.1 
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Traffic Circle Data Structures 
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Summary (1/3) 

 Applications of Monte Carlo methods 

Numerical integration 

Simulation 

 Random number generators 

Linear congruential 

Lagged Fibonacci 
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Summary (2/3) 

 Parallel random number generators 

 Manager/worker 

 Leapfrog 

 Sequence splitting 

 Independent sequences 

 Non-uniform distributions 

 Analytical transformations 

 Box-Muller transformation 

 Rejection method 
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Summary (3/3) 

 Concepts revealed in case studies 

Monte Carlo time 

Random walk 

Metropolis algorithm 

Simulated annealing 

Modeling queues 


