
OBJEKTNO-ORIJENTISANO
PROGRAMIRANJE

Predavanja

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

2025/26.

Opšte informacije

NASTAVNIK Ana Kaplarević-Mališić

SARADNICI Andreja Živić

Radovan Drašković

MATERIJALI IMI Moodle stranica

Obaveštenja će biti objavljivana na oglasnoj tabli na Moodle stranici.
Prijavite se da pratite predmet! Proverite koji mejl vam je vezan za IMI nalog.

KOMUNIKACIJA mejl, časovi, konsultacje

Teams – kod za grupu q2sow7i

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Literatura i način polaganja

Poeni

50 + 50 (10+15+25)

2 kolokvijuma + završni (E + A + B/seminarski)

Literatura

D. Poo, D. King, S. Ashok, Object-oriented programming in Java, Springer-verlag, 2008.

I. Horton, Java2 - JDK 1.5, CET, Beograd, 2006.

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Od početka kursa od vas očekujem(o)

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Na kraju kursa od vas očekujem(o)

Da razumete osnovne koncepte OOP-a

dovoljno da u svakom trenutku umete da ih u par rečenica i na primeru objasnite
nekome ko je završio bilo koji uvodni kurs programiranja (OP, PiP1, ...)

Da umete da odgovorite na većinu pitanja koja se javljaju na testovima za Java SE
Foundations sertifikat

Dobijaćete slične ili iste na ispitu

Da umete da pišete programe u Javi koji rade.

Programi koji podrazumevaju primenu OO koncepata.

Jednostavne grafičke aplikacije (igrice sa jednostavnom logikom) korišćenjem
SWING biblioteke.

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Agenda
za danas

Par pojmova pre početka*

Objektno-orijentisani v.s.

Proceduralni pristup

Objekti i klase

Java - Zdravo, svete!

Par pojmova pre početka*

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Par pojmova pre početka*

Objektno-orijentisani v.s. Proceduralni pristup

Objekti i klase

Java - Zdravo, svete!

AGENDA

Određivanje n! korišćenjem različitih paradigmi programiranja

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

PROCEDURALNO PROGRAMIRANJE C
int fakt(int n)
{
 if (n==1) return 1;
 return n*fakt(n-1);
}

…
printf(“%d”,fakt(10));

FUNKCIONALNO PROGRAMIRANJE HASKEL

factorial 0 = 1
factorial n = n * factorial (n - 1)
…
main = print (factorial 10)

OBJEKTNO-ORJENTISANO PROGRAMIRANJE JAVA
class Calc {
 static int fakt()
 {
 if (n==1) return 1;
 return n*fakt(n-1);
 }
}
…
System.out.println(Calc.fakt(10));

LOGIČKO PROGRAMIRANJE PROLOG
fakt(0,1).
fakt(X,Y):- X > 0,

U is X-1, fakt(U,Z),
 Y is X*Z.

…

?-fakt(10,X).
Im

p
e
ra

ti
vn

o
 p

ro
gr

am
ir
an

je

D
e
kl

ar
at

iv
n
o
 p

ro
gr

am
ir
an

je

Svaki zahtev se svodi

na evaluaciju izraza

Svaki zahtev se svodi na

određivanje logičkih

posledica

Podaci u strukturama.

Posao opisan funkcijom

koja sadrži sve korake

izračunavanja.

Posao opisan funkcijom.

Funkcija ima izvršioca.

Programske paradigme (i samo slični pojmovi)

Programski jezici se međusobno razlikuju po načinu na koji modeliraju realne probleme
- programskim paradigmama (paradigmama programiranja) koje podržavaju.

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Programming paradigm

 Obrazac koji služi kao doktrina/učenje koje se sledi u procesu programiranja

Programming technique

 Strategija rešavanja problema koja se primenjuje u algoritmu.

 Primer: strategija ‘podeli pa vladaj’

Programming style

 Stil kojim je program napisan. (elegancija ili nedostatak elegancije)

Programming culture

Sveukupan izraz jednog programera, koji je često usko povezan sa familijom programskih

jezika – definišu je glavne paradigme, stilovi i programerske tehnike koje jedan programer

koristi ili kojima vlada.

Kompajleri i interpreteri

Da bi bio izvršen program (pisan u nekom od viših programskih jezika) mora biti preveden na mašinski jezik.

PREVOĐENJE JE MOGUĆE IZVESTI

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

TOKOM IZVRŠAVANJA

▪ Prevođenje jedne po jedne naredbe prema potrebi
od strane interpretera, programa koji se ponaša kao
CPU s nekom vrstom dobavi-i-izvrši ciklusa. Da bi
izvršio program, interpreter radi u petlji u kojoj
uzastopno čita naredbe iz programa, odlučuje šta je
potrebno za izvršavanje te naredbe, i onda je
izvršava

▪ Interpreteri se mogu koristiti za izvršavanje
mašinskog programa pisanog za jednu vrstu računara
na sasvim različitom računaru.

U POTPUNOSTI PRE IZVRŠVANJA

▪ Prevođenje vrši prevodilac (kompajler)
odgovarajućeg programskog jezika.

▪ Nakon što je jednom preveden, program u
mašinskom jeziku se može izvršiti neograničen broj
puta, ali, naravno, samo na određenoj vrsti
računara.

C, C++ Python, PHP, JavaScript

Strukture i tipovi

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Tip podataka je određen (konačnim) skupom
vrednosti i nekim paketom operacija i relacija nad
elementima tog skupa.

Primer.

({-32768, ..., -1, 0, 1, ..., 32767}, +, -, * div, mod, =, <)

Struktura podataka je konglomerat podataka. Ona se

formira od drugih (jednostavnijih) struktura i od tipova.

Jedine operacije koje se nad strukturama mogu obavljati

su operacije selekcije.

Primer. var a: array [1 .. 100] of int;

struktura metod struktuiranja

eksplicitni metodi struktuiranja - array, record/structure, …

implicitni - preko pokazivaca

Metod struktuiranja ima sopstvene operacije selekcije.

Pr. Nizovi imaju indeksiranje (a[i]),

Slogovi imaju projektovanje (odabir polja sloga, a.ime)

Zašto je dobro praviti nove tipove?

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Zadatak: Napisati program koji izračunava matricu C prema sledećoj formuli

for i := 1 to n do

for j := 1 to n do

(* rutina koja invertuje matricu A u A1 *);

for i := 1 to n do

for j := 1 to n do

B1[i,j] := B[j, i];

for i := 1 to n do

for j := 1 to n do

(* rutina koja mnozi A1 i B1 *);

(* itd *)

𝐶 = 𝐴−1 ∙ 𝐵𝑇 + 𝑌 + 𝐴𝑑𝑗(𝑋)

Definišemo A, B, X, Y kao matrice i onda I verzija

Proceduralna apstrakcija

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Dekomponovati zadatak na manje. Napisati procedure za manipulaciju
strukturama podataka.

II verzija

var a, b, a1, c, ...: ARRAY[1..100, 1..100] of integer;

BEGIN

Inv(A, A1);

Transpose(B, B1);

MatMul(A1, B1, P);

Adj(X, X1);

ScalMul(Det(Y), Q);

MatAdd(P, Q, C);

END;

Apstrakcija podataka 1/3

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Definisati tip - Dizajnirati odgovarajuće strukture podataka, napisati procedure za
manipulaciju tim strukturama podataka.

III verzija

var a, b, a1, c, ...: MATRIX;

begin

NewMatrix(a);

NewMatrix(a1);

ReadMatrix(a);

ReadMatrix(b);

Invert(a,a1);

...

WriteMatrix(c);

DisposeMatrix(a);

...

end;

Apstrakcija podataka 2/3

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Razdvojiti upotrebu od implementacije.

var a, b, a1, c, ...: MATRIX;

begin

NewMatrix(a);

NewMatrix(b);

ReadMatrix(a);

...

WriteMatrix(c);

DisposeMatrix(a);

...

end;

Upotreba

type MATRIX = array[1..X, 1..Y] of real;

type MATRIX = ^MatrixEntry;

MatrixEntry = record

i, j: integer;

entry: real;

right, down: MATRIX

end;

Implementacija

KORISNIKU TIPA NIJE BITNA IMPLEMENTACIJA, VEĆ MANIFESTACIJE (TJ. OSOBINE) OPERACIJA DATOG TIPA

PODATAKA.

NewMatrix(a) begin ... end;

Korisnik ne mora da zna da li su matrice predstavljene kao array ili preko pokazivača, već samo kako se ponašaju

operacije nad vrednostima tog tipa, tako da piše program koristeći samo osobine operacija.

Abstract data type (ADT) – Osnovna ideja OOP-a

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Apstrakcija podataka + Sakrivanje informacija = Apstraktni tip podatka

Data Abstraction + Information hiding = ADT

Apstraktni tip podataka je tip podataka čiju implementaciju korisnik ne zna.

Programeru se da ime tipa i paket procedura. Implementacija tipa je SAKRIVENA. Dakle, apstrahovana je
jedna dimenzija problema: implementacija tipa.

Objektno-orijentisani v.s. Proceduralni pristup

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Par pojmova pre početka*

Objektno-orijentisani v.s. Proceduralni pristup

Objekti i klase

Java - Zdravo, svete!

AGENDA

Objektno-orijentisani v.s. Proceduralni pristup modelovanju

U jednoj stambenoj zgradi na svakom od m spratova (m<10) ima po n stanova (n<10). Napisati program za
pomoć u radu Kućnog saveta na sledeći način:

▪ Za svaki stan je poznat broj i površina stana, ime vlasnika, starost vlasnika i njegov radni status
(nezaposlen, zaposlen, penzioner).

▪ Podaci o stanovima i njihovim vlasnicima se nalaze u fajlu, od prvog ka poslednjem spratu. Stanovi se
numerišu tako tako da prva cifra predstavlja sprat na kome se stan nalazi, a druga redni broj stana na
spratu.

▪ Treba odrediti predsednika Kućnog saveta, a za predsednika bira najmlađi penzioner u zgradi.

▪ Odrediti stanare koji će učestvovati u krečenju zgrade. Kućni savet odlučuje o tome, tako što bira pet
najmlađih nezaposlenih stanara da obave krečenje.

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Proceduralni pristup modelovanju

▪ Odrediti šta je potrebno od podataka i definisati strukturu/e

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

▪ Uočiti zadatke iz kojih se sastoji ceo posao, a potom se na osnovu uočenih zadataka definisati procedure
za izvršavanje

stan=record
broj:string;
povrsina:integer;
ime:string[6];
godiste:integer;
posao:status;

end;

begin
 unos(a,m,n);
 sortg(a,b,k,m,n);
 predsednik(b,k);
 krecenje(b,k);
end.

▪ U glavnom delu programa treba odrediti redosled pozivanja napisanih
procedura

Unos
Predsednik
Krečenje

OO pristup modelovanju

▪ Razmatra se kompletan sistem u kome se obavlja posaoUočavaju se učesnici i aktivnosti koje oni znaju da
obavljaju sa dostupnim podacima (sakrivanje podataka);

▪ Kućni savet
zna koji su stanovi u zgradi
ume da formira listu stanova,

izbor predsednika
određuje učesnike krečenja

▪ Stan
zna sve o sebi
ume da pruži uvid u svoje podatke

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

KucniSavet

-stanovi: Stan[*]

+UcitajPodatkeIzFajla(nazivFajla: String)
-SortirajPoGodistuVlasnika(): Stan
+OdrediPredsednika(): String
+OdrediMolere(): String

OOP_primer

+main(args: String)

Stan

-brojStana: String
-povrsina: Double
-imeVlasnika: String
-starostVlasnika: Integer
-radniOdnos: RadniOdnos

+getBrojStana(): String
+setBrojStana(brojStana: String)
+getImeVlasnika(): String
+setImeVlasnika(imeVlasnika: String)
+getPovrsina(): Double
+setPovrsina(povrsina: Double)
+getRadniOdnos(): RadniOdnos
+setRadniOdnos(radniOdnos: RadniOdnos)
+getStarostVlasnika(): Integer
+setStarostVlasnika(starostVlasnika: Integer)

KucniSavet

-stanovi: Stan[*]

+UcitajPodatkeIzFajla(nazivFajla: String)
-SortirajPoGodistuVlasnika(): Stan
+OdrediPredsednika(): String
+OdrediMolere(): String

OOP_primer

+main(args: String)

Stan

-brojStana: String
-povrsina: Double
-imeVlasnika: String
-starostVlasnika: Integer
-radniOdnos: RadniOdnos

+getBrojStana(): String
+setBrojStana(brojStana: String)
+getImeVlasnika(): String
+setImeVlasnika(imeVlasnika: String)
+getPovrsina(): Double
+setPovrsina(povrsina: Double)
+getRadniOdnos(): RadniOdnos
+setRadniOdnos(radniOdnos: RadniOdnos)
+getStarostVlasnika(): Integer
+setStarostVlasnika(starostVlasnika: Integer)

OOP – izvršavanje posla

public class OOP_primer {

public static void main(String[] args) {

KucniSavet kucniSavet = new KucniSavet();

kucniSavet.UcitajPodatkeIzFajla("UlazniPodaci.txt");

System.out.println("Predsednik saveta je: " + kucniSavet.OdrediPredsednika());

System.out.println("Moleri su:");

String[] moleri = kucniSavet.OdrediMolere();

for (int i = 0; i < moleri.length; i++) {

System.out.println(moleri[i]);

}

}

}

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

OOP vs. Proceduralno programiranje

Proceduralno programiranje

Osnovni gradivni blok programa je funkcija.

Postavljeni zadatak se rešava tako što se
razbije na niz manjih zadataka od kojih se
svaka može implementirati u jednoj funkciji,
tako da je program niz funkcijskih poziva.

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Objektno-orijentisano programiranje

Osnovnu ulogu imaju objekti koji sadrže i
podatke i funkcije (metode). Podaci koje
objekat sadrži predstavljaju njegovo stanje, dok
pomoću metoda on to stanje da može menja i
komunicira sa drugim objektima.

Program se konstruiše kao skup objekata koji
međusobno komuniciraju.

Motivacija

OOP je nastalo kao jedna od posledica
softverske krize.

Softverska kriza 60-tih:

▪ kasne isporuke

▪ probijanje rokova i budžeta

▪ loš kvalitet

▪ nezadovoljavanje potreba

▪ slaba pouzdanost

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Kompleksnost softvera zahtevala je
promene u stilu programiranja.

Cilj je bio da se:

▪ proizvodi pouzdan softver

▪ smanji cena proizvodnje softvera

▪ razvijaju ponovo upotrebljivi moduli

▪ smanje troškovi održavanja

▪ smanji vreme razvoja softvera

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Objekti i klase

Par pojmova pre početka*

Objektno-orijentisani v.s. Proceduralni pristup

Objekti i klase

Java - Zdravo, svete!

AGENDA

Tip, implementacija tipa i upotreba

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

class Student {

String ime;

String fakultet;

public String getIme() { }

public String getFakultet() { }

}

Tip

Svaki student ima ime i

nayiv fakulteta.

Ume da da informacije

o sebi.

Klasa – implementacija tipa

Student s = new Student();

System.out.println(s.getFakultet());

Objekat primerak klase/tipa - Upotreba tipa

Klasa i objekat

Klasa je tip, a objekat primerak tipa.

Objekat se kreira na osnovu šablona opisanog klasom.

Ono što nije sakriveno od korisnika, pre svega metodi – interface.

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

procedure

=

=

objekat

metodi

stanje objekta

+
opisuju stanje

▪ pripadaju objektu

▪ menjaju stanje objekta

▪ njima se opisuje tzv. ponašanje objekta

podaci

“Zdravo, Svete!” u Javi

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Par pojmova pre početka*

Objektno-orijentisani v.s. Proceduralni pristup

Objekti i klase

Java - Zdravo, svete!

AGENDA

Java

Just Another Vague Acronim - JAVA

1991. tvorac Jave – James Gosling, Sun Microsystems

Stvorio jednostavan, platformski nezavistan jezik

Namenjen pokretanju elektronskih uređaja (Interaktivna TV,

inteligentne rerne, telefoni,..)

1995. Java se lansira na SunWorld-u,

obavljuje se kod i dokumentacija Jave na Internetu

1996. Sun razvija JDK 1.0

1999. Pojavljuje se JDK 1.2 - Java 2 SDK - Software Development Kit

2006. Sun objavljuje veliki deo Jave kao slobodan i otvoren kod pod GPL licencom

2010. Java postaje vlasništvo Oracle-a

Poslednja SE (Sttandard Edition) verzija sa LTS (Long Term Support) - Java 21

Trenutna SE verzija – Java 23

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Kako je omogućena prenosivost?

▪ Projektanti Jave su se odlučili za upotrebu kombinacije kompajliranja i interpretiranja. Programi
pisani u Javi se prevode u mašinski jezik virtuelnog računara, tzv. Java Virtual Machine.

▪ Mašinski jezika za Java Virtual Machine se zove Java bytecode.

▪ Sve što je računaru potrebno da bi izvršio Java bajt kod jeste interpreter. Takav interpreter
oponaša virtuelnu Java mašinu i izvršava program.

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

editor
Java

kompajlerJava program

Prog.java

Java bajt kod

Prog.class

JVM za

Macintosh

JVM za

Windows

JVM za

Linux

samo jednom
svaki put

Jednom preveden kod se može izvršiti na bilo kojoj mašini koja ima (odgovarajuću) Java virtuelnu mašinu

Zdravo, Svete!

// HelloWorld.java

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World");

}

}

▪ svaka Java aplikacija mora sadržati barem jednu klasu s metodom

main(String[] args)

▪ počinje svoje izvršavanje pozivom metoda main

▪ ovako napisan program se prevodi izvršavajući

javac HelloWorld.java

▪ Ako nema grešaka prevodilac javac kreira datoteku HelloWorld.class koja sadrži bytecode instrukcije za JVM.

▪ A pokreće se pozivom JVM uz prosledjivanje bajtkoda

java HelloWorld

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

Osnovne karakteristike jezika

▪ Objektna orijentacija

podržava sve koncepte objektno orijentisanog programiranja

sintaksa slična C++, OO model jednostavniji

▪ Prenosivost (portability)

Java programi se prevode u byte kod koji nije mašinski jezik nijednog konkretnog računara, već se
izvršava na JVM (Java Virtuelna Mašina)

▪ Sigurnost

JVM pruža zaštitu od virusa koji bi se prenosili kroz izvršni kod

▪ Robusnost

Stroga provera tipova, proveravani izuzeci, sakupljanje đubreta

▪ Efikasnost

JIT (Just In Time) prevodioci

INSTITUT ZA MATEMATIKU I INFORMATIKU | PRIRODNO-MATEMATIČKI FAKULTET | UNIVERZITET U KRAGUJEVCU

	Slide 1: OBJEKTNO-ORIJENTISANO PROGRAMIRANJE
	Slide 2: Opšte informacije
	Slide 3: Literatura i način polaganja
	Slide 4: Od početka kursa od vas očekujem(o)
	Slide 5: Na kraju kursa od vas očekujem(o)
	Slide 7
	Slide 8: Par pojmova pre početka*
	Slide 9: Određivanje n! korišćenjem različitih paradigmi programiranja
	Slide 10: Programske paradigme (i samo slični pojmovi)
	Slide 11: Kompajleri i interpreteri
	Slide 12: Strukture i tipovi
	Slide 13: Zašto je dobro praviti nove tipove?
	Slide 14: Proceduralna apstrakcija
	Slide 15: Apstrakcija podataka 1/3
	Slide 16: Apstrakcija podataka 2/3
	Slide 18: Abstract data type (ADT) – Osnovna ideja OOP-a
	Slide 19: Objektno-orijentisani v.s. Proceduralni pristup
	Slide 20: Objektno-orijentisani v.s. Proceduralni pristup modelovanju
	Slide 21: Proceduralni pristup modelovanju
	Slide 22: OO pristup modelovanju
	Slide 23: OOP – izvršavanje posla
	Slide 24: OOP vs. Proceduralno programiranje
	Slide 25: Motivacija
	Slide 26
	Slide 27: Tip, implementacija tipa i upotreba
	Slide 28: Klasa i objekat
	Slide 29: “Zdravo, Svete!” u Javi
	Slide 30: Java
	Slide 31: Kako je omogućena prenosivost?
	Slide 32: Zdravo, Svete!
	Slide 33: Osnovne karakteristike jezika

